精英家教网 > 初中数学 > 题目详情
8.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.
(1)求证:AD∥CG;
(2)求证:△ACF≌△CBG;
(3)若CF=12,求DE的长.

分析 (1)证明∠DAC=∠GCA=45°,即可得出AD∥CG;
(2)证明∠ACF=∠CBG.AC=BC,∠CAF=∠BCG=45°,即可得出△ACF≌△CBG;
(3)延长CG交AB于点H,则GH是△ABD的中位线,BG=DG;由(1)知AD∥CG,E是AC中点,得DE=GE;由(2)得BG=CF=12;故DE=$\frac{1}{2}$CF=6

解答 (1)证明:∵∠ACB=90°,AC=BC,CG平分∠ACB,
∴∠CAB=45°,∠ACG=45°,
∵AD⊥AB,
∴∠DAC=90°-45°=45°=∠ACG,
∴AD∥CG;
(2)证明:∵∠ACB=90°,AC=BC,CG平分∠ACB,
∴∠CAF=∠CBA=45°,∠BCG=∠ACG=45°,
∴∠BCG=∠CAF=45°,
∵∠CBG=∠ACF,AC=BC,
在△ACF和△CBG中,$\left\{\begin{array}{l}{∠ACF=∠CBG}&{\;}\\{AC=BC}&{\;}\\{∠CAF=∠BCG}&{\;}\end{array}\right.$,
∴△ACF≌△CBG(ASA),
∴AF=CG;
(3)解:延长CG交AB于点H,如图所示:
则GH是△ABD的中位线,BG=DG;
由(1)知AD∥CG,E是AC中点,
∴DE=GE;
由(2)得BG=CF=12;
∴DE=$\frac{1}{2}$CF=6.

点评 本题考查了三角形全等的判定和性质、等腰三角形的性质、平行线的判定及性质,三角形全等是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,已知点A(10,0),B(4,8),C(0,8),连接AB,BC,点P在x轴上,从原点O出发,以每秒1个单位长度的速度向点A运动,同时点M从点A出发,以每秒2个单位长度的速度沿折线A-B-C向点C运动,其中一点到达终点时,另一点也随之停止运动,设P,M两点运动的时间为t秒.
(1)求AB长;
(2)设△PAM的面积为S,当0≤t≤5时,求S与t的函数关系式,并指出S取最大值时,点P的位置;
(3)t为何值时,△APM为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先化简,再求值.
-2(a2b-$\frac{1}{2}$ab2)-(-2a2b+3ab2)+ab,其中a=1,b=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,抛物线L:y=-$\frac{1}{2}$(x-t)(x-t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=$\frac{k}{x}$(k>0,x>0)于点P,且OA•MP=12.
(1)求k的值;
(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;
(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图四边形ABCD的四个顶点在同一个圆上,这样的四边四边形叫做圆内接四边形.
如图若∠BAD=70°,则∠BOD=140°;∠BCD=110°.
如图若∠BCD=100°,则∠BOD=160°;∠BAD=80°.
在计算中你发现∠BAD与∠BCD什么关系?
由此得出圆周角定理推理3:圆内接四边形对角互补.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程:2-$\frac{x}{x-3}$=$\frac{3}{3-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.一个圆锥的三视图如图所示,求圆锥的全面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,等腰直角△ABC,∠BAC=90°,点E是边AB上的任意一点(E与A,B两点不重合),过点E作ED⊥CE,过点B作BD⊥BC,BD与ED相交于点D.

(1)当点E是AB边中点时.如图1,CE与DE有怎样的数量关系;
(2)当点E不是AB边中点时.如图2,CE与DE有怎样的数量关,并说明理山;
(3)当点E在AB的延长线上时.如图3.CE与DE有怎样的数量关系.并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,直线y=2x+4$\sqrt{2}$与坐标轴分别交于A、B两点,点C在x轴上,且OA=OC,点P从A出发沿射线AC方向运动,速度为每秒1个单位长度,设运动时间为t(s).

(1)求点B、C的坐标;
(2)若△OCP的面积为4,求运动时间t的值;
(3)如图2,若∠POQ=90°,且OP=OQ,连接BQ,求运动过程中BQ的最小值.

查看答案和解析>>

同步练习册答案