精英家教网 > 初中数学 > 题目详情

【题目】在学校开展的献爱心活动中,小东同学打算在暑假期间帮助一家社会福利书店推销ABCD四种书刊.为了了解四种书刊的销售情况,小东对五月份这四种书刊的销售量进行了统计,小东通过采集数据,绘制了两幅不完整的统计图表(如图),请你根据所给出的信息解答以下问题:

书刊种类

频数

频率

A

   

0.25

B

1000

0.20

C

750

0.15

D

2000

   

1)填充频率分布表中的空格及补全频数分布直方图;

2)若该书店计划定购此四种书刊6000册,请你计算B种书刊应采购多少册较合适?

3)针对调查结果,请你帮助小东同学给该书店提一条合理化的建议.

【答案】(1)见解析;(2)B种书刊应采购1200册较合适;(3)在购书时应该多购买D类书刊.

【解析】

1)由统计表和直方图可知:D类书刊的频率为1-0.25-0.20-0.15=0.40A类书刊的频数为1250
2)计划定购此四种书刊6000册,则B种书刊应采购6000×0.20=1200册;
3)在购书时应该多购买D类书刊(只要合理即可).

解:(1)完成表格和直方图如下图:

书刊种类

频数

频率

A

1250

0.25

B

1000

0.20

C

750

0.15

D

2000

0.4

26000×0.21200(册);

答:B种书刊应采购1200册较合适;

3)在购书时应该多购买D类书刊.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】假设某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为90%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,6小时车库恰好停满;如果开放3个进口和2个出口,3小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,因为车库改造,只能开放1个进口和1个出口,则从早晨7点开始经过______小时车库恰好停满.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过两点,与x轴的另一个交点为C,顶点为D,连结CD

1)求该抛物线的表达式;

2)点P为该抛物线上一动点(与点BC不重合),设点P的横坐标为t

①当点P在直线BC的下方运动时,求的面积的最大值;

②该抛物线上是否存在点P,使得若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数y=(k0x0)的图象与等边三角形OAB的边OAAB分别交于点MN,且OM=2MA,若AB=3,那么点N的横坐标为(  )

A.B.C.4D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,已知正方形ABCD和正方形AEFG,连接DGBE

1)发现:当正方形AEFG绕点A旋转,如图②所示.

①线段DGBE之间的数量关系是   

②直线DG与直线BE之间的位置关系是   

2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD2ABAG2AE时,上述结论是否成立,并说明理由.

3)应用:在(2)的情况下,连接BGDE,若AE1AB2,求BG2+DE2的值(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=﹣的图象与直线ykxk0)相交于点AB,以AB为底作等腰三角形,使∠ACB120°,且点C的位置随着k的不同取值而发生变化,但点C始终在某一函数图象上,则这个图象所对应的函数解析式为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于的一元二次方程有两个实数根,且其中一根为另一根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,不正确的是(

A.方程是倍根方程;

B.是倍根方程,则

C.若方程是倍根方程,且相异两点都在抛物线上,则方程的一个根为

D.若点在反比例函数的图象上,则关于的方程是倍根方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形的顶点分别在轴上,且.将正方形绕原点顺时针旋转,且,得到正方形,再将正方绕原点顺时针旋转,且,得到正方形,以此规律,得到正方形,则点的坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于两点(点在点左侧),经过点的直线轴交于点,与抛物线的另一个交点为,且

1)直接写出点的坐标,并用含的式子表示直线的函数表达式(其中用含的式子表示).

2)点为直线下方抛物线上一点,当的面积的最大值为时,求抛物线的函数表达式;

3)设点是抛物线对称轴上的一点,点在抛物线上,以点为顶点的四边形能否为矩形?若能,求出点的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案