精英家教网 > 初中数学 > 题目详情
如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.
(1)∵点B与O(0,0)关于x=3对称,
∴点B坐标为(6,0).
将点B坐标代入y=ax2+2x得:
36a+12=0;
∴a=-
1
3

∴抛物线解析式为y=-
1
3
x2+2x
.(2分)
当x=3时,y=-
1
3
×32+2×3=3

∴顶点A坐标为(3,3).(3分)
(说明:可用对称轴为x=-
b
2a
,求a值,用顶点式求顶点A坐标)

(2)设直线AB解析式为y=kx+b.
∵A(3,3),B(6,0),
6k+b=0
3k+b=3

解得
k=-1
b=6

∴y=-x+6.
∵直线lAB且过点O,
∴直线l解析式为y=-x.
∵点P是l上一动点且横坐标为t,
∴点P坐标为(t,-t).(4分)
当P在第四象限时(t>0),
S=S△AOB+S△OBP
=
1
2
×6×3+
1
2
×6×|-t|
=9+3t.
∵0<S≤18,
∴0<9+3t≤18,
∴-3<t≤3.
又∵t>0,
∴0<t≤3.(5分)
当P在第二象限时(t<0),
作PM⊥x轴于M,设对称轴与x轴交点为N,
则S=S梯形ANMP+S△ANB-S△PMO
=
1
2
[3+(-t)]•(3-t)+
1
2
×3×3-
1
2
(-t)(-t)

=
1
2
(t-3)2+
9
2
-
1
2
t2

=-3t+9;
∵0<S≤18,
∴0<-3t+9≤18,
∴-3≤t<3;
又∵t<0,
∴-3≤t<0;(6分)
∴t的取值范围是-3≤t<0或0<t≤3.

(3)存在,点Q坐标为(3,3)或(6,0)或(-3,-9).(9分)
由(2)知t的最大值为3,则P(3,-3);
过O、P作直线m、n垂直于直线l;
∵直线l的解析式为y=-x,
∴直线m的解析式为y=x;
可设直线n的解析式为y=x+h,则有:
3+h=-3,h=-6;
∴直线n:y=x-6;
联立直线m与抛物线的解析式有:
y=x
y=-
1
3
x2+2x

解得
x=0
y=0
x=3
y=3

∴Q1(3,3);
同理可联立直线n与抛物线的解析式,求得Q2(6,0),Q3(-3,-9).
(说明:点Q坐标答对一个给1分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线y=x+5经过D、M两点.
(1)求此抛物线的解析式;
(2)连接AM、AC、BC,试比较∠MAB和∠ACB的大小,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB=8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.
(1)填空:直线OC的解析式为______;抛物线的解析式为______;
(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;
①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;
②设△BOE的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为______.
(2)A,B的中点是点C,则sin∠CMB=______.
(3)如果过点M的一条直线与y=mx2+nx+p图象相交于另一点N(a,b),a,b满足a2-a+m=0,b2-b+m=0,则点N的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y2=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2经过点(1,5),当y=15时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B、C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内.
(1)求二次函数的解析式;
(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.
(4)求出当x为何值时P有最大值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上的一动点,且在第三象限.
①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;
②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,OC=4,AO=2OC,且抛物线对称轴为直线x=-3.
(1)求该抛物线的函数表达式;
(2)己知矩形DEFG的一条边DE在线段AB上,顶点F、G分别在AC、BC上,设OD=m,矩形DEFG的面积为S,当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=
2
5
DF
,求出此时点M的坐标;
(3)若点Q是抛物线上一点,且横坐标为-4,点P是y轴上一点,是否存在这样的点P,使得△BPQ是直角三角形?如果存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案