【题目】解方程
(1)=x﹣2;
(2)=2
【答案】(1)x=3;(2)x=1
【解析】
(1)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案,
(2)先把方程进行整理,然后去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.
(1)去分母得:2(2x﹣1)﹣(x+1)=6(x﹣2),
去括号得:4x﹣2﹣x﹣1=6x﹣12,
移项得:4x﹣x﹣6x=﹣12+2+1,
合并同类项得:﹣3x=﹣9,
系数化为1得:x=3,
(2)原方程可整理得:,
去分母得:5(10x+10)﹣2(10x+30)=20,
去括号得:50x+50﹣20x﹣60=20,
移项得:50x﹣20x=20+60﹣50,
合并同类项得:30x=30,
系数化为1得:x=1.
科目:初中数学 来源: 题型:
【题目】如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积= ).
(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b的式子表示S1和S2;
(2)请写出上述过程所揭示的乘法公式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标中,点的坐标为,点的坐标为,将线段向右平移个单位长度得到线段(点和点分别是点和点的对应点),连接、,点是线段的中点.
备用图
(1)求点的坐标;
(2)若长方形以每秒个单位长度的速度向正下方运动,(点、、、、分别是点、、、、的对应点),当与轴重合时停止运动,连接、,设运动时间为妙,请用含的式子表示三角形的面积(不要求写出的取值范围);
(3)在(2)的条件下,连接、,问是否存在某一时刻,使三角形的面积等于三角形的面积?若存在,请求出值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度.
图1为点P在⊙O外的情形示意图.
(1)若点B(1,0),C(1,1),D(0, ),则SB=;SC=;SD=;
(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;
(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR , 直接写出满足条件的线段PQ长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为 ,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为( )
A.(3,1)
B.(2,0)
C.(3,3)
D.(2,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y= 的图象交于点A(﹣1,n).
(1)求反比例函数y= 的解析式;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:
如果y′= ,那么称点Q为点P的“关联点”.
例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”
为点(﹣5,﹣6).
(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数 的图象上,那么这个点是(填“点A”或“点B”).
(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,
那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标 .
(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标
y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:
①稿费不高于800元的不纳税;
②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;
③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.
试根据上述纳税的计算方法作答:
(1)若王老师获得的稿费为2400元,则应纳税 元,若王老师获得的稿费为4000元,则应纳税 元;
(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com