精英家教网 > 初中数学 > 题目详情
已知两个全等的直角三角形纸片ABC、DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=m°,AC=DF=4,BC=EF=7.若纸片DEF不动.
精英家教网
(1)在图1中,连接AE,则直角梯形ACFE的腰长CF=
 
、AE=
 

(2)将△ABC作平移或旋转或轴对称变换后,使得△ABC与△DEF组合成矩形.在备用图1中画出△ABC每一次变换后的图形,若是平移,请写出平移的方向与距离;若是旋转,请写出旋转中心与旋转角度;若是轴对称,要指明它的对称轴;
(3)在图1中,将△ABC绕点F逆时针旋转,当旋转角∠BFD(0°<∠BFD<180°)为多少度时,直角三角形ABC的直角边与DE平行,请说明理由.
分析:(1)连接AE,作AH⊥FE于H,构造直角三角形EAH,利用勾股定理解答;
(2)将△ABC以点B为旋转中心顺时针旋转360°-m°,再以点B为旋转中心,使点C与点C′重合;
(3)根据直角三角形的性质及平行线的判定解答.
解答:精英家教网解:(1)根据题意,梯形ACFE中,CF=BC-FB=7-4=3;
作AH⊥FB与H,
则AH=CF=3,HE=FE-AC=7-4=3,
在Rt△AHE中,AE=
AH2+HE2
=
32+32
=3
2

故答案为:3,3
2


(2)将△ABC以BC为对称轴,作轴对称变换,然后以点B为旋转中心,顺时针旋转,使点A与点E重合即可;
精英家教网
(3)由图可知,旋转角∠BFD与∠B′是同位角,当∠BFD=∠B′=(90-m)度时,两直线平行.
精英家教网
点评:此题主要考查了旋转的性质,同时涉及勾股定理、平行线的判定、旋转等内容,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=a精英家教网x2-bx-c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6.
(1)求梯形的两腰长;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州)如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=ax2-bx-c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6.
(1)求梯形的两腰长;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2013届四川德阳市中江县柏树中学九年级下学期第一次月考试数学试卷(带解析) 题型:解答题

如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.

(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省宁波市江东区初三学业水平抽测数学试卷(解析版) 题型:解答题

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=ax2-bx-c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6.
(1)求梯形的两腰长;
(2)求抛物线的解析式.

查看答案和解析>>

同步练习册答案