精英家教网 > 初中数学 > 题目详情
(2007•深圳)如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,∠BAE=∠MCE,∠MBE=45°.
(1)求证:BE=ME;
(2)若AB=7,求MC的长.

【答案】分析:由已知可得∠MBE=∠BME=45°,即BE=ME,根据AAS判定△AEB≌△CEM,全等三角形的对应边相等,则MC=AB=7.
解答:(1)证明:∵AD∥BC,EA⊥AD,
∴∠DAE=∠AEB=90°.(2分)
∵∠MBE=45°,∴∠BME=45°.
∴BE=ME.(2分)

(2)解:∵∠AEB=∠AEC=90°,∠1=∠2,
又∵BE=ME,
∴△AEB≌△CEM,(3分)
∴MC=BA=7.(1分)
点评:此题主要考查了梯形的性质及全等三角形的判定方法的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2007•深圳)如图,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD=OB,BD交OC于点E.
(1)求∠BEC的度数;
(2)求点E的坐标;
(3)求过B,O,D三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,叫分母有理化.例如:


等运算都是分母有理化)

查看答案和解析>>

科目:初中数学 来源:2007年广东省深圳市中考数学试卷(解析版) 题型:解答题

(2007•深圳)如图,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且OD=OB,BD交OC于点E.
(1)求∠BEC的度数;
(2)求点E的坐标;
(3)求过B,O,D三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,叫分母有理化.例如:


等运算都是分母有理化)

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《三角形》(14)(解析版) 题型:解答题

(2007•深圳)如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,∠BAE=∠MCE,∠MBE=45°.
(1)求证:BE=ME;
(2)若AB=7,求MC的长.

查看答案和解析>>

科目:初中数学 来源:2007年广东省深圳市中考数学试卷(解析版) 题型:解答题

(2007•深圳)如图1,在平面直角坐标系中,抛物线与直线相交于A,B两点.
(1)求线段AB的长;
(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少;
(3)如图2,线段AB的垂直平分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出OM,OC,OD的长,并验证等式是否成立;
(4)如图3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,AB=c.CD=b,试说明:

查看答案和解析>>

同步练习册答案