精英家教网 > 初中数学 > 题目详情
4.先化简,后求值:($\frac{x}{y}$-$\frac{y}{x}$)÷$\frac{{x}^{2}-2xy+{y}^{2}}{xy}$,其中x=3,y=-1.

分析 先算括号里面的,再算除法,最后把x=3,y=-1代入进行计算即可.

解答 解:原式=$\frac{(x+y)(x-y)}{xy}$•$\frac{xy}{(x-y)^{2}}$
=$\frac{x+y}{x-y}$,
当x=3,y=-1时,原式=$\frac{3-1}{3+1}$=$\frac{1}{2}$.

点评 本题考查的是分式的化简求值,在解答此类题目时要注意把分式化为最简形式,再代入求值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如图①所示,直线l是函数y=-kx的图象,若kb>0,则函数y=kx+b的图象大致是如图②所示的(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知$\sqrt{-a}$=$\sqrt{\frac{7}{8}}$,则a的值是(  )
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.±$\frac{7}{8}$D.-$\frac{343}{512}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,某个函数的图象由线段AB和BC组成,其中点A(0,2),B($\frac{3}{2}$,1),C(4,3),则函数的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:如图,在Rt△ABC中,∠ACB=90°,AC=15,BC=20,CD⊥AB,垂足为D,点E是点D关于AC的对称点,连接AE,CE.

(1)求CD和AD的长;
(2)若将△ACE沿着射线AB方向平移,设平移的距离为m(平移距离指点A沿AB方向所经过的线段长度),当点E平移到线段AC上时,求m的值;
(3)如下图,将△ACE绕点A顺时针旋转-个角α(0°<α<180°),记旋转中的△ACE为△AC′E′,在旋转过程中,设C′E′所在的直线与直线BC交于点P,与直线AB交于点Q,若存在这样的P,Q两点,使△BPQ为等腰三角形,直接写出此时AQ的长,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,添加以下条件(  ),不能使△ADE∽△ACB.
A.$\frac{AD}{AC}$=$\frac{AE}{AB}$B.$\frac{AD}{AC}$=$\frac{DE}{BC}$C.∠ADE=∠ACBD.∠AED=∠ABC

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在△ABC中,点D、E分别在边AB、AC,下列条件中不能判断△ABC∽△AED的是(注意对应点)(  )
A.∠AED=∠BB.∠ADE=∠CC.$\frac{AD}{AE}$=$\frac{AC}{AB}$D.$\frac{AD}{AB}$=$\frac{AE}{AC}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在菱形ABCD中,AB=6,∠ABC=60°,动点E、F同时从顶点B出发,其中点E从点B向点A以每秒1个单位的速度运动,点F从点B出发沿B-C-A的路线向终点A以每秒2个单位的速度运动,以EF为边向上(或向右)作等边三角形EFG,AH是△ABC中BC边上的高,两点运动时间为t秒,△EFG和△AHC的重合部分面积为S.
(1)用含t的代数式表示线段CF的长;
(2)求点G落在AC上时t的值;
(3)求S关于t的函数关系式;
(4)动点P在点E、F出发的同时从点A出发沿A-H-A以每秒2$\sqrt{3}$单位的速度作循环往复运动,当点E、F到达终点时,点P随之运动,直接写出点P在△EFG内部时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知一次函数y=2x+b,若x=-$\sqrt{3}$时,y=$\sqrt{3}$,则b=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

同步练习册答案