分析 (1)由DG平分三角形ABC周长,得到三角形BDG周长与四边形ACDG周长相等,再由D为BC中点,得到BD=CD,利用等式的性质得到BG=AC+AG,表示出BG的长即可;
(2)由D、F分别为BC、AB的中点,表示出DF与BF,由BG=BF表示出FG,得到DF=FG,利用等边对等角得到一对角相等,再由DE为三角形中位线,得到DE与AB平行,利用两直线平行内错角相等得到一对角相等,等量代换即可得证;
(3)由△GBD∽△GDF,且一对公共角相等,得到∠B=∠FDG,由(2)得:∠FGD=∠FDG,等量代换得到∠FGD=∠B,利用等角对等边得到BD=DG,再由BD=DC,等量代换得到BD=DG=DC,得到B、C、G三点以BC为直径的圆周上,利用圆周角定理判断即可得证.
解答 (1)解:∵△BDG与四边形ACDG的周长相等,
∴BD+BG+DG=AC+CD+DG+AG,
∵D为BC的中点,
∴BD=CD,
∴BG=AC+AG,
∵BG+(AC+AG)=AB+AC,
∴BG=$\frac{1}{2}$(AB+AC)=$\frac{1}{2}$(b+c);
(2)证明:∵D、F分别为BC、AB的中点,
∴DF=$\frac{1}{2}$AC=$\frac{1}{2}$b,BF=$\frac{1}{2}$AB=$\frac{1}{2}$c,
∵FG=BG-BF=$\frac{1}{2}$(b+c)-$\frac{1}{2}$c=$\frac{1}{2}$b,
∴DF=FG,
∴∠FDG=∠FGD,
∵D、E分别为BC、AC的中点,
∴DE∥AB,
∴∠EDG=∠FGD,
∴∠FDG=∠EDG,即DG平分∠EDF;
(3)证明:∵△GBD∽△GDF,且∠DFG>∠B,∠BGD=∠DGF(公共角),
∴∠B=∠FDG,
由(2)得:∠FGD=∠FDG,
∴∠FGD=∠B,
∴DG=BD,
∵BD=CD,
∴DG=BD=CD,
∴B、C、G三点以BC为直径的圆周上,
∴∠BGC=90°,即BC⊥CG.
点评 此题属于相似形综合题,涉及的知识有:三角形中位线定理,相似三角形的性质,以及圆周角定理,熟练掌握性质及定理是解本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 17 | B. | 14 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com