精英家教网 > 初中数学 > 题目详情

如图,数学公式,O为AB的中点,AC,BD都是半径为3的⊙O的切线,C,D为切点,则数学公式的长为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
A
分析:首先连接OC,OD,由AC,BD都是半径为3的⊙O的切线,根据切线的性质,可得OC⊥AC,OD⊥BD,又由,O为AB的中点,易求得∠AOC与∠BOD的度数,∠COD的度数,由弧长公式,即可求得的长.
解答:解:连接OC,OD,
∵AC,BD都是半径为3的⊙O的切线,
∴OC⊥AC,OD⊥BD,且OC=OD=3,
∵AB=6,O为AB的中点,
∴OA=OB=3
∴cos∠AOC=cos∠BOD==
∴∠AOC=∠BOD=45°,
∴∠COD=180°-∠AOC-∠BOC=90°,
的长为:=π.
故选A.
点评:此题考查了切线的性质、弧长公式以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:
(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;
(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.
对于甲、乙两人的作法,下列判断何者正确(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长为6的正方形ABCD中,点P为AB上一动点,连接DB、DP,AE⊥DP于E.
(1)如图①,若P为AB的中点,则
BF
DF
=
 
BF
AC
=
 

(2)如图②,若
AP
BP
=
1
2
时,证明AC=4BF;
(3)如图③,若P在BA的延长线上,当
BF
AC
=
 
时,
AP
AB
=
1
3

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•台州模拟)阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,结论BP•PC=AB•CD仍成立吗?试说明理由;
(2)拓展应用:如图3,M为AB的中点,AE与BD交于点C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=4
2
,AF=3,求FG的长.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省沭阳银河学校九年级下学期质量检测数学卷 题型:解答题

如图,在直径为AB的一块半圆形土地上,画出一块三角形区域,使三角形的一边为AB,顶点C在半圆上,其它两边长分别为6cm和8cm,现要建造一个内接于△ABC的矩形水池DEFN,其中DE在AB上,如图所示的设计方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB边上的高h;
(2)设DN=x,当x取何值时,水池DEFN的面积最大?
(3)实际施工时,发现在AB上距B点1.85m处有一棵大树,则这棵大树是否位于最大矩形的边上?如果在,为了保护大树,请你设计出另外的方案,使内接于满足条件的三角形中建最大矩形水池能避开大树。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省九年级下学期质量检测数学卷 题型:解答题

如图,在直径为AB的一块半圆形土地上,画出一块三角形区域,使三角形的一边为AB,顶点C在半圆上,其它两边长分别为6cm和8cm,现要建造一个内接于△ABC的矩形水池DEFN,其中DE在AB上,如图所示的设计方案是使AC=8cm,BC=6cm。

(1)求△ABC中AB边上的高h;

(2)设DN=x,当x取何值时,水池DEFN的面积最大?

(3)实际施工时,发现在AB上距B点1.85m处有一棵大树,则这棵大树是否位于最大矩形的边上?如果在,为了保护大树,请你设计出另外的方案,使内接于满足条件的三角形中建最大矩形水池能避开大树。

 

查看答案和解析>>

同步练习册答案