精英家教网 > 初中数学 > 题目详情

如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t

(1)当t=2时,求CF的长;

(2)①当t为何值时,点C落在线段BD上?

②设△BCE的面积为S,求S与t之间的函数关系式;

(3)如图2,当点C与点E重合时,△CDF沿x轴左右平移得到△,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形,请直接写出所有符合上述条件的点的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=
k1
x
(x>0)和y=
k2
x
(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.
(1)当t=2时,求CF的长;
(2)①当t为何值时,点C落在线段BD上;
     ②设△BCE的面积为S,求S与t之间的函数关系式;
(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,若点M是x轴正半轴上的任意一点,过点M作PQ∥y轴,分别交函数y=
k1
x
(x>0)和y=
k2
x
(x>0)的图象于点P和Q,连接OP、OQ,则下列结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,若点M是x轴正半轴上的任意一点,过点M作PQ∥y轴,分别交函数y=
k1
x
(x>0)和y=
k2
x
(x>0)的图象于点P和Q,连接OP、OQ,则下列结论正确的个数有(  )个.
①∠POQ不可能等于90°           
PM
QM
=|
k1
k2
|

③这两个函数的图象一定关于x轴对称      
④△POQ的面积是
1
2
(|k1|+|k2|).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,若点M是x轴正半轴上的任意一点,过点M作PQ∥y轴,分别交函数y=
k1
x
(x>0)和y=
k2
x
(x>0)的图象于点P和Q,连接OP、OQ.则下列结论:
(1)∠POQ不可能等于90°;
(2)
PM
QM
=
k1
k2

(3)这两个函数的图象一定关于x轴对称;
(4)△POQ的面积是
1
2
(|k1|+|k2|)

其中正确的有
(4)
(4)
(填写序号)

查看答案和解析>>

同步练习册答案