精英家教网 > 初中数学 > 题目详情
4.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则图中阴影面积(△PEF和△PGH的面积和)等于(  )
A.7B.8C.12D.14

分析 根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.

解答 解:连接EG,FH,
∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,
∴AE=AB-BE=4-1=3,
CH=CD-DH=4-1=3,
∴AE=CH,
在△AEF与△CGH中,
$\left\{\begin{array}{l}{AE=CH}\\{∠A=∠C=90°}\\{AF=CG}\end{array}\right.$,
∴△AEF≌△CGH(SAS),
∴EF=GH,
同理可得,△BGE≌△DFH,
∴EG=FH,
∴四边形EGHF是平行四边形,
∵△PEF和△PGH的高的和等于点H到直线EF的距离,
∴△PEF和△PGH的面积和=$\frac{1}{2}$×平行四边形EGHF的面积,
平行四边形EGHF的面积
=4×6-$\frac{1}{2}$×2×3-$\frac{1}{2}$×1×(6-2)-$\frac{1}{2}$×2×3-$\frac{1}{2}$×1×(6-2),
=24-3-2-3-2,
=14,
∴△PEF和△PGH的面积和=$\frac{1}{2}$×14=7.
故选:A.

点评 本题考查了矩形的性质,平行四边形的判定与性质,作出辅助线并证明出四边形EGHF是平行四边形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.分式方程$\frac{4}{x-1}=\frac{3}{x}$的解为x=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.在边长为2的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为2的概率为(  )
A.$\frac{3}{16}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{5}{16}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(-1,0),点C的坐标是(0,-3).
(1)求抛物线的函数表达式;
(2)求直线BC的函数表达式和∠ABC的度数;
(3)在线段BC上是否存在一点P,使△ABP∽△CBA?若存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程组:$\left\{\begin{array}{l}{\frac{{x}^{2}}{5}+\frac{{y}^{2}}{15}=1}\\{y=\frac{\sqrt{3}}{3}x+\frac{5\sqrt{3}}{3}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若反比例函数y=$\frac{k}{x}$的图象经过点(-3,2),则反比例函数y=-$\frac{k}{x}$的图象在(  )
A.一、二象限B.三、四象限C.一、三象限D.二、四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(-1)2015+(-$\frac{1}{3}$)-1+$|{-\sqrt{2}}|$-2sin45°.
(2)解不等式$x-1≤\frac{2x-1}{3}$,并写出不等式的正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知x2a=3,x3b=$\frac{1}{3}$,则x8a+9b的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.化简:
(1)(3a5b3-a4b2)÷(-a2b)2
(2)a(3-a)-(1+a)(1-a)

查看答案和解析>>

同步练习册答案