精英家教网 > 初中数学 > 题目详情

如图,已知反比例函数y=数学公式的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=数学公式的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

解:(1)∵△AOB的面积为2,
=2,
又∵函数图象在二、四象限,
∴k<0,
∴k=-4,
故y=-
则点A的坐标为(-1,4),点C的坐标为(2,-2),
将点A(-1,4),点C(2,-2),代入y=ax+b可得
解得:
故直线y=ax+b的解析式为:y=-2x+2;
(2)令y=0,可得x=1,
则点M的坐标为(1,0),
在Rt△ABM中,AB=4,BM=2,
则AM==2
(3)存在.
设点P的纵坐标为y,
BM×|y|=8,
解得:y=±8,
故点P的坐标为(-,8)或(,-8).
分析:(1)根据反比例函数k的几何意义求出k的值,继而确定点A、点C的坐标,利用待定系数法可求出直线y=ax+b的解析式;
(2)根据解析式求出点M的坐标,在Rt△ABM中求出AM即可;
(3)设点P纵坐标为y,根据△MBP的面积为8,求出y,继而可求出点P的坐标.
点评:本题考查了反比例函数的综合,首先根据反比例函数k的几何意义求出k值是关键,要求我们熟练待定系数法求函数解析式,第三问关键去根据三角形的面积确定P点纵坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案