精英家教网 > 初中数学 > 题目详情

【题目】计算:

1)(﹣t43+(﹣t26

2)(m42+m32mm22m3

【答案】(1)0;(2)m6

【解析】

(1)首先计算幂的乘方,再算加减即可;
(2)首先计算幂的乘方和同底数幂的乘法,再算加减即可.

(1)(﹣t4)3+(﹣t2)6

=﹣t12+t12

=0

(2)(m4)2+(m3)2m(m2)2m3

=m8+m6m8

=m6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究ABC的形状(按角分类).

(1)当ABC三边分别为6、8、9时,ABC为   三角形;当ABC三边分别为6、8、11时,ABC为   三角形.

(2)猜想,当a2+b2   c2时,ABC为锐角三角形;当a2+b2   c2时,ABC为钝角三角形.

(3)判断当a=2,b=4时,ABC的形状,并求出对应的c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.

(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?

(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按下列程序进行运算如图

规定:程序运行到判断结果是否大于244为一次运算若运算进行了5次才停止则x的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为S,则四边形B0GC的面积=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠ACB90°点EAB的中点,连接CE,过点EEDBC于点D,在DE的延长线上取一点F,使AFCE,求证四边形ACEF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2﹣mx+n与x轴交于A、B两点,与y轴交于点C(0,﹣1).且对称轴x=1.

(1)求出抛物线的解析式及A、B两点的坐标;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3?若存在,求出点D的坐标;若不存在.说明理由(使用图1);
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°EF⊥AB,垂足为F,连接DF

1)试说明AC=EF

2)求证:四边形ADFE是平行四边形.

查看答案和解析>>

同步练习册答案