【题目】如图,△AOB,△COD是等腰直角三角形,点D在AB上,
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.
【答案】(1)见解析;(2)
【解析】试题分析:(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;
(2)由(1)可知△AOC≌△BOD,所以AC=BD=1,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,根据勾股定理即可求出CD的长.
试题解析:(1)∵△AOB,△COD是等腰直角三角形,
∴OC=OD,OA=OB,∠AOB=∠COD=90°,
∴∠AOC=∠BOD=90°﹣∠AOD,
在△AOC和△BOD中,
∴△AOC≌△BOD(SAS);
(2)∵△AOB,△COD是等腰直角三角形,
∴OC=OD,OA=OB,∠AOB=∠COD=90°,
∴∠B=∠OAB=45°,
∵△AOC≌△BOD,BD=1,
∴AC=BD=1,∠CAO=∠B=45°,
∵∠OAB=45°,
∴∠CAD=45°+45°=90°,
在Rt△CAD中,由勾股定理得:CD=.
科目:初中数学 来源: 题型:
【题目】某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如下表:
第1个 | 第2个 | 第3个 | 第4个 | … | 第n个 | |
调整前单价x(元) | x1 | x2=6 | x3=72 | x4 | … | xn |
调整后单价x(元) | y1 | y2=4 | y3=59 | y4 | … | yn |
已知这n个玩具调整后的单价都大于2元.
(1)求y与x的函数关系式,并确定x的取值范围;
(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?
(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导出过.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”( )
A. 32 B. 56 C. 60 D. 64
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式:
①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….
(2)通过猜想写出与第n个点阵图相对应的等式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P.
(1)求点P坐标和b的值;
(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.
①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;
②求出t为多少时,△APQ的面积小于3;
③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).
(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;
(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).
(1)直线经过点C,且与x轴交与点E,求四边形AECD的面积;
(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com