精英家教网 > 初中数学 > 题目详情

【题目】如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向向右平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于

【答案】4或8
【解析】解:设AC交A′B′于H,

∵A′H∥CD,AC∥CA′,

∴四边形A′HCD是平行四边形,

∵∠A=45°,∠D=90°

∴△A′HA是等腰直角三角形

设AA′=x,则阴影部分的底长为x,高A′D=12﹣x

∴x(12﹣x)=32

∴x=4或8,

即AA′=4或8cm.

所以答案是:4或8.

【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分,以及对平移的性质的理解,了解①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣1.25x2+4.25x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)

(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系上有点A(10),点A第一次跳动至点,第二次点跳动至点第三次点跳动至点,第四次点跳动至点……,依此规律跳动下去,则点与点之间的距离是(

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,于点,求的度数.

解:(已知)

___________(同位角相等,两直线平行)

______(两直线平行,内错角相等)

(已知)

___________(等量代换)

________________

________________

(已知)

______________(垂直的定义)

(等量代换)

(已知)

__________(等式的性质)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=ACDABC所在平面内的一点,过DDEABDFAC分别交直线AC,直线AB于点EF.

1)如图1,当点D在线段BC上时,通过观察分析线段DEDFAB之间的数量关系,并说明理由;

2)如图2,当点D在直线BC上,其他条件不变时,试猜想线段DEDFAB之间的数量关系(请直接写出等式,不需证明);

3)如图3,当点DABC内一点,过DDEABDFAC分别交直线AC,直线AB和直线BCEFG. 试猜想线段DEDFDGAB之间的数量关系(请直接写出等式,不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EFBD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为(  )

A. 35° B. 55° C. 65° D. 75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020年初,由于新冠肺炎的影响,我们不能去学校上课,但是我们“停课不停学”.所以学校派王老师开车从学校出发前往太阳乡修善村给学生送新书,行驶一段时间后,因车子出故障,途中耽搁了一段时间,车子修好后,加速前行,到达修善村后给学生发完新书,然后匀速开车回到学校.其中表示王老师从学校出发后的时间,表示王老师离学校的距离,下面能反映的函数关系的大致图象是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点C是线段AB上的一点,点D是线段AB的中点,点E是线段BC的中点.

1)当AC=8BC=6时,求线段DE的长度;

2)当AC=mBC=nmn)时,求线段DE的长度;

3)从(1)(2)的结果中,你发现了什么规律?请直接写出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,张老师举了下面的例题:

例1 等腰三角形ABC中,∠A=110°,求∠B的度数.

例2 等腰三角形ABC中,∠A=40°,求∠B的度数.

张老师启发同学们进行变式,小敏编了如下一题:

变式 等腰三角形ABC中,∠A=80°,求∠B的度数.

(1)请你解答以上的变式题.

(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.

查看答案和解析>>

同步练习册答案