精英家教网 > 初中数学 > 题目详情
9.如图,在矩形ABCD中,P是AD上一动点,O为BD的中点,连接PO并延长,交BC于点Q.
(1)求证:四边形PBQD是平行四边形
(2)若AD=6cm,AB=4cm,点P从点A出发,以1cm/s的速度向点D运动(不与点D重合),设点P运动时间为t s,请用含t的代数式表示PD的长,并求出当t为何值时,四边形PBQD是菱形.并求出此时菱形的周长.

分析 (1)根据矩形性质推出AD∥BC,根据平行线的性质得出∠PDO=∠QBO,根据全等三角形的判定ASA证△PDO≌△BQO,根据全等三角形的性质推出OP=OQ,则“对角线相互平分的四边形为平行四边形”;
(2)①由线段间的和差关系来求PD的长度;
②根据平行四边形的判定得出四边形PBQD是平行四边形,求出DP=BP即可.

解答 解:(1)∵证明:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,
∵O为BD中点,
∴OB=OD,
在△PDO和△QBO中,
$\left\{\begin{array}{l}{∠PDO=∠QBO}\\{OB=OD}\\{∠POD=∠BOQ}\end{array}\right.$,
∴△PDO≌△QBO(ASA),
∴OP=OQ.
又∵OB=OD,
∴四边形PBQD是平行四边形;

(2)依题意得,AP=tcm,则PD=(6-t) cm.
当四边形PBQD是菱形时,有PB=PD=(6-t) cm.
∵四边形ABCD是矩形,
∴∠A=90°.
在Rt△ABP中,AP2+AB2=BP2,AB=4
∴t2+42=(6-t)2
解得$t=\frac{5}{3}$,
所以运动的时间为$\frac{5}{3}s$时,四边形PBQD是菱形.
∴此时菱形的周长为$({6-\frac{5}{3}})×4=\frac{52}{3}$(cm).

点评 本题考查了矩形的性质,全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,题目比较好,综合性比较强.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.小明和小颖用一副扑克牌做摸牌游戏(去掉大小王):小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A,且牌面的大小与花色无关).然后两人把摸到的牌都放回,重新开始游戏.
(1)现小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少?
(2)若小明已经摸到的牌面为2,情况又如何?如果若小明已经摸到的牌面为A呢?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:$\frac{{{x^2}-1}}{{{x^2}+x}}÷(\frac{{{x^2}+1}}{x}-2),其中x=\sqrt{3}+1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在一次数学课上,老师出示了这样一道题目:“如图,BD是矩形ABCD的对角线,将AB沿BE折叠,使A点落在BD上的点G处,将边CD沿DF折叠,使点C落在BD上的点H处,求证:四边形BEDF是平行四边形”.小丽选择了先证明△DEG≌△BFH,再证明DE=BF,进而得到四边形BEDF是平行四边形,小明向老师提出了另一种证明方法.
(1)小丽证明四边形BEDF是平行四边形的依据是一组对边平行且相等的四边形是平行四边形;

(2)按小明的想法写出证明过程;
(3)当学生们完成了证明后,老师又提出如下问题,连接EH,FG,若AB=6,BC=8,试求四边形EGFH的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算中,正确的是(  )
A.$3\sqrt{2}-2\sqrt{2}=1$B.$\sqrt{{{(-5)}^2}}=-5$C.$({1+\sqrt{2}})({1-\sqrt{2}})=-1$D.$\sqrt{\frac{3}{2}}=\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(-1,0),点C在y轴上,如果三角形ABC的面积等于6,那么点C的坐标为(0,3)或(0,-3).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下面计算正确的是(  )
A.4a-3a=1B.a2+a3=a5C.x6÷x3=x2D.(-2a32=4a6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)计算:$\sqrt{12}$+|2-$\sqrt{3}$|+($\sqrt{3}$)2              
(2)解方程:$\frac{3}{x-1}$=$\frac{6}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示),如果大正方形的面积是49,小正方形的面积为4,直角三角形的两直角边长分别为a,b,那么下列结论:
(1)a2+b2=49,(2)b-a=2,(3)ab=$\frac{45}{2}$,(4)a+b=$\sqrt{94}$中,
正确结论的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

同步练习册答案