解:(1) ① ∵ △
ABC和△
ADE都是等边三角形,
∴
AE=
AD,
AB=
AC,∠
EAD=∠
BAC=60°.
又∵ ∠
EAB=∠
EAD-∠
BAD,∠
DAC=∠
BAC-∠
BAD∴ ∠
EAB=∠
DAC,
∴ △
AEB≌△
ADC. ………………………………………………………(3分)
② 四边形
是平行四边形. ………………………………………(6分)
(2)(1)中的结论:
① △
AEB≌△
ADC,② 四边形
是平行四边形,均成立. ……………………(8分)
(3)当BC=CD时,四边形
BCFE是菱形.……………………………………………(9分)
理由: 由①得△
AEB≌△
ADC,
∴BE=BC
又∵ BE=CD,
∴ BC=CD.
由②得四边形
是平行四边形,
∴ 四边形
是菱形. ……………………………………………(13分)
(1)①证明:因∠EAB+∠BAD=∠BAD+∠DAC=60度,所以∠EAB=∠DAC,又EA=DA,BA=CA,故△
AEB≌△
ADC.。②于是∠EBC=∠EBA+∠ABC=∠DCA+∠ABC=120度。那么∠EBC+∠BCG=120度+60度=180度,于是EB//GC,又EG//BC,故BCGE为一平行四边形。 (2)BEGC仍为平行四边形。与(1)类似,容易证明:ΔABE全等于ΔACD,那么∠ABE=∠ACD=120度,于是∠CBE=∠ACB=60度,进而BE//GC,又BC//EG,从而得证。(3)欲使其成为菱形,只须BE=BC,又BE=CD,故只须选取D点使BC=CD即可。