精英家教网 > 初中数学 > 题目详情
14.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数的数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的是二进制,只要两个数码0和1,如二进制中101=1×22+0×21+1等于十进制的数5,;又如二进制数10111=1×24+0×23+1×22+1×2+1,故二进制的10111等于十进制的数23,那么二进制中的1101等于十进制的数13.

分析 根据二进制与十进制的换算方法计算即可.

解答 解:根据题意得:1×23+1×22+1=8+4+1=13.
故答案为:13

点评 此题考查了有理数的混合运算,弄清题中的换算方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(-3,2).
(1)将△ABC向右平移6个单位长度,再向下平移4个单位长度,得到△A'B′C′.请画出平移后的△A′B′C′,并写出点的坐标A′(3,-2)、B′(1,-3)、C′(4,-4);
(2)求出△A′B′C′的面积;
(3)若连接AA′、CC′,则这两条线段之间的关系是AA′∥CC′,AA′=CC′.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列计算正确的是(  )
A.$\sqrt{2}$+$\sqrt{5}$=$\sqrt{7}$B.$\sqrt{(-2)^{2}}$=-2C.($\sqrt{-2}$)2=2D.2÷$\sqrt{2}$=$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,C到直线AF的距离是$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在等腰直角△ABC中,AC=BC,∠BCA=90°,D、E为斜边AB上的点,∠DCE=45°,若AD=2,DE=5,则BE的长是(  )
A.3B.$\frac{9}{2}$C.$\sqrt{19}$D.$\sqrt{21}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,O为等腰三角形ABC的底边AB的中点,以AB为直径的半圆分别交AC,BC于于点E.
(1)求证:∠AOE=∠BOD.
(2)求证:$\widehat{AD}=\widehat{BE}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.

请回答:
(1)求图1中△ABC的面积;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答题卡的图2中画出三边长分别为$\sqrt{13}$、2$\sqrt{5}$、$\sqrt{29}$的格点△DEF;
②计算△DEF的面积是8.
(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若PQ=2$\sqrt{2}$,PR=$\sqrt{13}$,QR=$\sqrt{17}$,求六边形AQRDEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.
(1)求证:EF∥AC;   (2)求∠BEF大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.-2x2•x3-(-2x32-x9÷x3

查看答案和解析>>

同步练习册答案