精英家教网 > 初中数学 > 题目详情
12.已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点
(1)如图1,探究∠AME,∠E,∠ENC的数量关系;并加以证明;
(2)如图2,∠AME=30°,EF平分∠MEN,NP平分∠ENC,EQ∥NP,求∠FEQ的度数;
(3)如图3,点G为CD上一点,∠AMN=m∠EMN,∠GEK=m∠GEM,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系(用含m的式子表示)

分析 (1)过点E作l∥AB,利用平行线的性质可得∠1=∠BME,∠2=∠DNE,由∠MEN=∠1+∠2,等量代换可得结论;
(2)利用角平分线的性质可得∠NEF=$\frac{1}{2}$∠MEN,∠ENP=$\frac{1}{2}$∠END,由EQ∥NP,可得∠QEN=∠ENP=$\frac{1}{2}$∠ENC,由(1)的结论可得∠MEN=∠BME+∠END,等量代换得出结论;
(3)由已知可得∠EMN=$\frac{1}{m}$∠BMN,∠GEN=$\frac{1}{m}$∠GEK,由EH∥MN,可得∠HEM=∠ENM=$\frac{1}{m}$∠BMN,因为∠GEH=∠GEM-∠HEM,等量代换得出结论.

解答 解:(1)如图1,过点E作l∥AB,
∵AB∥CD,
∴l∥AB∥CD,
∴∠1=∠AME,∠2=∠CNE,
∵∠MEN=∠1+∠2,
∴∠E=∠AME+∠ENC;

(2)∵EF平分∠MEN,NP平分∠END,
∴∠NEF=$\frac{1}{2}$∠MEN,∠ENP=$\frac{1}{2}$∠END,
∵EQ∥NP,
∴∠QEN=∠ENP=$\frac{1}{2}$∠ENC,
∵∠MEN=∠AME+∠ENC,
∴∠MEN-∠ENC=∠AME=30°,
∴∠FEQ=∠NEF-∠NEQ
=$\frac{1}{2}$∠MEN-$\frac{1}{2}$∠ENC,
=$\frac{1}{2}$×30°=15°;

(3)m∠GEH=∠GEK-∠AMN.
∵∠AMN=m•∠EMN,∠GEK=m•∠GEM,
∴∠EMN=$\frac{1}{m}$∠AMN,∠GEN=$\frac{1}{m}$∠GEK,
∵EH∥MN,
∴∠HEM=∠EMN=$\frac{1}{m}$∠AMN,
∵∠GEH=∠GEM-∠HEM,
=$\frac{1}{m}$∠GEK-$\frac{1}{m}$∠AMN,
∴m∠GEH=∠GEK-∠AMN,
∵∠BMN=180°-∠AMN,
∴∠BMN+∠KEG-m∠GEH=180°.

点评 本题主要考查了平行线的性质,作出适当的辅助线,结合图形等量代换是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,AC⊥OM,AD⊥ON,BE⊥OM,BF⊥ON,垂足分别为C,D,E,F,且AC=AD,求证:BE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)(-23)+(-5)-(-3)-(-8);
(2)(-0.5)-(4$\frac{1}{4}$)+5.75-(+8$\frac{1}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知$\frac{4x-1}{(x-2)(x-5)}$=$\frac{A}{x-5}$+$\frac{B}{x-2}$,求A,B的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,Rt△ABC中,∠B=90°,CD是∠BCA的平分线,DE⊥AC于E,AC=10,BC=6,则AE=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.将A(3,2),B为x轴上一点,O为坐标原点,若△AOB是等腰三角形,求B点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.图1、图2是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,点A、B、C均在小正方形的格点上,请画出满足要求的图形;
(1)在图1中画出以AB和BC为边的四边形ABCD,此四边形只有一组对边相等,点D在小正方形的顶点上;
(2)在图2中画出以AB和BC为边的四边形ABCE,此四边形有两组对边相等,点E在小正方形的顶点上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某气象研究中心观察一场沙尘暴从发生到结束的全过程,开始时风速按一定的速度匀速增长,经过荒漠地时,风速增长就加快可.一段时间后,风速保持不变,当沙尘暴遇到绿色植被区时,风速保持不变,当沙尘暴遇到绿色植被区时,其风速开始逐渐减小,最终停止,如图是风速与时间的变化关系的图象,结合图象回答下列问题[其中水平数轴表示时间x(h),竖直数字表示风速y(km/h)]
(1)沙尘暴从开始发生到结束共经历了多长时间?
(2)从图象上看,风速在哪一个时间段增大的比较快?增加的速度是多少?
(3)风速从开始减小到最终停止,每小时减小多少?
(4)风速在那一时间段保持不变?经历可多少?
(5)为了防止沙尘暴,可以采取哪些措施?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在函数y=$\frac{k}{x}$(x>0)的图象上取三点A、B、C,由这三点分别向x轴、y轴作垂线,设矩形AA1OA2、BB1OB2、CC1OC2的面积分别为SA、SB、SC,试比较三者大小,并说明理由.

查看答案和解析>>

同步练习册答案