精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O和⊙O′相交于A、B两点,AC是⊙O的直径,如果AC=12,BE=30,BC=AD,则DE=
 
,∠E=
 
分析:根据三角形相似可以得出AD的长度,再结合正弦定理得出∠CAB的度数,即可得出∠E的度数,进而利用余弦定理求出DE的长.
解答:精英家教网解:连接AB,设AD=x,则BC=x,CD=12+x,CE=30+x
∵△ABC∽△EDC
AC
CE
=
CB
CD
?
12
x+30
=
x
12+x
?x=6

在Rt△ABC中,sin∠CAB=
x
AC
=
6
12
=
1
2
?∠CAB=30°

∴∠E=30°,∠C=60°
在△DCE中,DE=12+x=18,CE=x+30=36,
由余弦定理,得DE=
182+362-2×18×36×COS60°
=18
3

故答案为:18
3
,30°.
点评:此题主要考查了相似三角形的判定以及余弦定理的应用和正弦定理,题目综合性较强,考查知识比较全面.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,A和B两个小机器人,自甲处同时出发相背而行,绕直径为整数米的圆周上运动,15分钟内相遇7次,如果A的速度每分钟增加6米,则A和B在15分钟内相遇9次,问圆周直径至多是多少米?至少是多少米?(取π=3.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分8分)

   某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD。已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.

   1.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;

   2.(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为,且到AB、BC、AD的距离与到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,清说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年四川省营山县九年级上学期期末考试数学卷 题型:解答题

(本小题满分8分)

    某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD。已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.

    1.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;

    2.(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为,且到AB、BC、AD的距离与到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,清说明理由.

 

查看答案和解析>>

同步练习册答案