精英家教网 > 初中数学 > 题目详情
2.若$\frac{A}{x-3}$+$\frac{B}{x+4}$=$\frac{2x-1}{(x-3)(x+4)}$,求A、B的值.

分析 利用待定系数法即可求出答案.

解答 解:$\frac{A}{x-3}$+$\frac{B}{x+4}$
=$\frac{A(x+4)}{(x-3)(x+4)}$+$\frac{B(x-3)}{(x-3)(x+4)}$
=$\frac{(A+B)x+4A-3B}{(x-3)(x+4)}$
∴$\left\{\begin{array}{l}{A+B=2}\\{4A-3B=-1}\end{array}\right.$
解得:$\left\{\begin{array}{l}{A=\frac{5}{7}}\\{B=\frac{9}{7}}\end{array}\right.$

点评 本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.(1)-14+(-2013)0-${(\frac{1}{2})}^{-2}$+$\sqrt{4}$
(2)先化简再求值:(1+a)(1-a)+(a-2)2,其中a=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:$\sqrt{4}$+|-2|+$\root{3}{-27}$+(-1)2016

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)计算:$\sqrt{16}$+$\root{3}{-27}$-|1-$\sqrt{2}$|;
(2)解方程组$\left\{{\begin{array}{l}{4x+3y=1}\\{2x-y=3}\end{array}}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算
(1)(-1)2017-($\frac{1}{3}$)-1+$\root{3}{8}$
(2)(1+$\frac{1}{x-2}$)÷$\frac{{x}^{2}-2x+1}{{x}^{2}-4}$,其中x=-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)1-$\frac{3}{2-x}$=$\frac{5-x}{x-2}$;
(2)$\frac{x+1}{4{x}^{2}-1}$=$\frac{3}{2x+1}$-$\frac{4}{4x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P,点Q同时从点B出发,点P以2cm/s的速度沿B→A→C运动,终点为C,点Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=-$\frac{4}{5}$t2+$\frac{28}{5}$t(4≤t≤7);③线段PQ的长度的最大值为$\frac{6}{5}$$\sqrt{10}$;④若△PQC与△ABC相似,则t=$\frac{40}{7}$秒,其中正确的说法是(  )
A.①②④B.②③④C.①③④D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.等腰三角形的三边长分别为a,b,2,且a,b是关于x的一元二次方程x2-8x+n-2=0的两根,则n的值为18.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,直线l⊥x轴于点P,且与反比例函数y1=$\frac{{k}_{1}}{x}$(x>0)及y2=$\frac{{k}_{2}}{x}$(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1-k2的值等于(  )
A.1B.3C.6D.8

查看答案和解析>>

同步练习册答案