4£®Èçͼ£¬Å×ÎïÏßy=ax2+bx-2£¨a¡Ù0£©¹ýµãA£¨-1£¬0£©£¬B£¨4£¬0£©£¬ÓëyÖá½»ÓëµãC£¬¶¥µãΪD£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽÓ붥µãDµÄ×ø±ê£»
£¨2£©µãE´ÓAµã³ö·¢£¬ÑØxÖáÏòBµãÔ˶¯²¢µ½µãBÍ£Ö¹£¨µãEÓëµãA£¬B²»Öغϣ©¹ýµãE×÷Ö±ÏßlƽÐÐBD£¬½»Ö±ÏßADÓÚµãF£¬ÉèAEµÄ³¤Îªm£¬Á¬½ÓDE£¬Çó¡÷DEFÃæ»ýµÄ×î´óÖµ¼°´ËʱµãEµ½BDµÄ¾àÀ룻
£¨3£©ÊÔ̽¾¿£º
¢ÙÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹µÃMA+MCµÄÖµ×îС£¿Èô´æÔÚÇëÇó³öMµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢ÚÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚµãN£¬Ê¹Ø­NA-NCØ­µÄÖµ×î´ó£¿Èô´æÔÚÇëÇó³öNµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©½«A¡¢BµãµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ£¬¼´¿ÉµÃ³öa¡¢bÖµ£¬ÔÙ½«Å×ÎïÏß½âÎöʽ±ä³É¶¥µãʽ£¬¼´¿ÉµÃ³ö¶¥µã×ø±ê£»
£¨2£©ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÓÃm±íʾ³öFDµÄ³¤¶È£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ£¬ÓÃm±íʾ³öµãEµ½Ö±ÏßADµÄ¾àÀ룬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¼´Äܱä³É³ö¡÷DEFµÄÃæ»ý£¬Åä·½¼´¿ÉµÃµ½¼«Öµ£¬ÀûÓÃÃæ»ýÈ¡¼«ÖµÊ±µÄmµÄÖµ£¬ÕÒ³öEµã×ø±ê£¬ÔÙ¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ£¬¼´¿ÉÇó³ö´ËʱµãEµ½BDµÄ¾àÀ룻
£¨3£©¢ÙÀûÓÃÈý½ÇÐεÄÁ½±ßÖ®ºÍ´óÓÚµÚÈý±ß£¬¿ÉÒÔÕÒµ½Ê¹µÃMA+MCµÄÖµ×îСʱµÄµãMµÄλÖã¬ÇóÁ½Ö±ÏߵĽ»µã¼´¿ÉµÃ³öMµã×ø±ê£»¢ÚÀûÓÃÈý½ÇÐεÄÁ½±ßÖ®²îСÓÚµÚÈý±ß£¬¿ÉÒÔÕÒµ½Ê¹Ø­NA-NCØ­µÄÖµ×î´óʱµãNµÄλÖã¬ÇóÁ½Ö±ÏߵĽ»µã¼´¿ÉµÃ³öNµã×ø±ê£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=ax2+bx-2£¨a¡Ù0£©¹ýµãA£¨-1£¬0£©£¬B£¨4£¬0£©£¬
¡àÓÐ$\left\{\begin{array}{l}{a-b-2=0}\\{16a+4b-2=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-\frac{3}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=$\frac{1}{2}$x2-$\frac{3}{2}$x-2£®
¡ßy=$\frac{1}{2}$x2-$\frac{3}{2}$x-2=$\frac{1}{2}$${£¨x-\frac{3}{2}£©}^{2}$-$\frac{25}{8}$£¬
¡à¶¥µãDµÄ×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{25}{8}$£©£®
£¨2£©°´ÕÕÌâÒ⣬×÷³öͼÐÎ1£¬ÈçÏ£¬

ÉèAEAEµÄ³¤Îªm£¬ÔòEµã×ø±êΪ£¨m-1£¬0£©£®
¡ßA£¨-1£¬0£©£¬B£¨4£¬0£©£¬D£¨$\frac{3}{2}$£¬-$\frac{25}{8}$£©£¬
¡àAB=5£¬AD=BD=$\frac{5\sqrt{41}}{8}$£®
¡ßEF¡ÎBD£¬
¡à¡ÏAFE=¡ÏADB£¬¡ÏAEF=¡ÏABD£¬
¡à¡÷AEF¡×¡÷ABD£¬
¡à$\frac{AF}{AD}$=$\frac{AE}{AB}$£¬AF=$\frac{\sqrt{41}}{8}$m£¬FD=AD-AF=$\frac{\sqrt{41}}{8}$£¨5-m£©£®
ÉèÖ±ÏßADµÄ½âÎöʽΪy=kx+b£¬
¡ßA£¨-1£¬0£©£¬D£¨$\frac{3}{2}$£¬-$\frac{25}{8}$£©ÔÚÖ±ÏßADÉÏ£¬
¡àÓÐ$\left\{\begin{array}{l}{0=-k+b}\\{-\frac{25}{8}=\frac{3}{2}k+b}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-\frac{5}{4}}\\{b=-\frac{5}{4}}\end{array}\right.$£¬
¡àÖ±ÏßADµÄ½âÎöʽΪy=-$\frac{5}{4}$x-$\frac{5}{4}$£¬¼´$\frac{5}{4}$x+y+$\frac{5}{4}$=0£®
µãEµ½Ö±ÏßADµÄ¾àÀëh=$\frac{|\frac{5}{4}£¨m-1£©+\frac{5}{4}|}{\sqrt{£¨\frac{5}{4}£©^{2}+{1}^{2}}}$=$\frac{5\sqrt{41}}{41}$m£¬
¡÷DEFµÄÃæ»ý=$\frac{1}{2}$•FD•h=-$\frac{5}{16}$m2+$\frac{25}{16}$m=-$\frac{5}{16}$${£¨m-\frac{5}{2}£©}^{2}$+$\frac{125}{64}$£¬
µ±m=$\frac{5}{2}$ʱ£¬¡÷DEFµÄÃæ»ý×î´ó£¬×î´óֵΪ$\frac{125}{64}$£®
ÉèÖ±ÏßBDµÄ½âÎöʽΪy=k1x+b1£¬
ÔòÓÐ$\left\{\begin{array}{l}{0=4{k}_{1}+{b}_{1}}\\{\frac{25}{8}=\frac{3}{2}{k}_{1}+{b}_{1}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{k}_{1}=\frac{5}{4}}\\{{b}_{1}=-5}\end{array}\right.$£¬
¡àÖ±ÏßBDµÄ½âÎöʽy=$\frac{5}{4}$x-5£¬¼´$\frac{5}{4}$x-y-5=0£¬
¡ßµãE×ø±êΪ£¨$\frac{3}{2}$£¬0£©£¬
¡àµãEµ½BDµÄ¾àÀëΪ$\frac{|\frac{5}{4}¡Á\frac{3}{2}-5|}{\sqrt{£¨\frac{5}{4}£©^{2}+{1}^{2}}}$=$\frac{25\sqrt{41}}{82}$£®
£¨3£©¢ÙÁ¬½ÓBC£¬×÷Å×ÎïÏ߶ԳÆÖá½»BCÓÚµãM£¬Á¬½ÓMA£¬Èçͼ2£¬

ÓÉÅ×ÎïÏߵĶԳÆÐÔ¿ÉÖª£¬MA=MB£¬
MA+MC=MB+MC=BC£¬
¡ßµ±MµãÔÚ¶Ô³ÆÖáÉÏÒƶ¯Ê±£¨²»ÔÚBCÉÏ£©£¬ÓÐMB+MC£¾BA£¨Èý½ÇÐÎÁ½±ßÖ®ºÍ´óÓÚµÚÈý±ß£©£¬
¡àµ±µãMÔÚBCÉÏʱ£¬MA+MC=BC×îС£®
½«x=0´úÈëÅ×ÎïÏß½âÎöʽy=$\frac{1}{2}$x2-$\frac{3}{2}$x-2ÖУ¬µÃy=-2£¬
¼´µãC×ø±êΪ£¨0£¬-2£©£®
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=k3x-2£¬
½«µãB£¨4£¬0£©´úÈ룬µÃ0=4k3-2£¬½âµÃk3=$\frac{1}{2}$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{1}{2}$x-2£®
ÓÉ£¨1£©¿ÉÖªÅ×ÎïÏߵĶԳÆÖáΪx=$\frac{3}{2}$£¬
½â$\left\{\begin{array}{l}{y=\frac{1}{2}x-2}\\{x=\frac{3}{2}}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=-\frac{5}{4}}\end{array}\right.$£¬
¼´Ê¹µÃMA+MCµÄÖµ×îСµÄMµÄ×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{5}{4}$£©£®
¢ÚÁ¬½ÓAC£¬²¢ÑÓ³¤AC½»Å×ÎïÏ߶ԳÆÖáÓÚµãN£¬Èçͼ3£¬

¡ßµ±NµãÔÚ¶Ô³ÆÖáÉÏÒƶ¯Ê±£¨²»ÔÚÖ±ÏßACÉÏ£©£¬ÓÐ|NA-NC|£¼AC£¨Èý½ÇÐÎÁ½±ßÖ®²îСÓÚµÚÈý±ß£©£¬
¡àµ±µãNÔÚÖ±ÏßACÉÏʱ£¬|NA-NC|=AC×î´ó£®
¡ßµãC£¨0£¬-2£©£¬
¡àÉèÖ±ÏßACµÄ½âÎöʽΪy=k4x-2£¬
½«µãA£¨-1£¬0£©´úÈ룬µÃ0=-k4-2£¬½âµÃk4=-2£¬
¼´Ö±ÏßACµÄ½âÎöʽΪy=-2x-2£®
Å×ÎïÏߵĶԳÆÖáΪx=$\frac{3}{2}$£¬
½â$\left\{\begin{array}{l}{y=-2x-2}\\{x=\frac{3}{2}}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=-5}\end{array}\right.$£¬
¼´Ê¹Ø­NA-NCØ­µÄÖµ×î´óµÄNµÄ×ø±êΪ£¨$\frac{3}{2}$£¬-5£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÔËÓ㬽âÌâµÄ¹Ø¼ü£º£¨1£©½«µãµÄ×ø±ê´úÈ룬½â¶þÔªÒ»´Î·½³Ì¼´¿É£»£¨2£©ÀûÓÃÈý½ÇÐÎÏàËƵÄÐÔÖÊÒÔ¼°µãµ½Ö±ÏߵľàÀ룬¿ÉÒÔÓú¬mµÄ´úÊýʽ±íʾ³öÀ´Ãæ»ý£¬½â¼«ÖµÎÊÌâ¼´¿É£»£¨3£©ÀμÇÈý½ÇÐεÄÈý±ß¹Øϵ£¬Á½±ßÖ®ºÍ´óÓÚµÚÈý±ß£¬Á½±ßÖ®²îСÓÚµÚÈý±ß£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÒÑÖªE¡¢F·Ö±ðΪƽÐÐËıßÐÎABCDµÄ¶Ô±ßAD¡¢BCÉϵĵ㣬ÇÒDE=BF£¬EM¡ÍACÓÚM£¬FN¡ÍACÓÚN£¬EF½»ACÓÚµãO£¬ÇóÖ¤£º
£¨1£©EM=FN£»   
£¨2£©EFÓëMN»¥Ïàƽ·Ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Í¬Ê±Å×ÖÀÈýöÖʵؾùÔȵÄÒ»ÔªÓ²±Ò£¬ÇóÅ×ÖÀ½á¹ûÓÖÁ½Ã¶ÕýÃæÏòÉϵĸÅÂÊ£®£¨ÓÃÊ÷״ͼ»òÁÐ±í·¨ÁгöËùÓпÉÄܵĽá¹û£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èçͼ£¬Õý·½ÐÎABCDµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®5B£®25C£®7D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬¡÷ABCÖУ®¡ÏB=22.5¡ã£¬ABµÄ´¹Ö±Æ½·ÖÏß½»ABÓÚµãQ£¬½»BCÓÚµãP£¬PE¡ÍACÓÚµãE£¬AD¡ÍBCÓÚµãD£¬AD½»PEÓÚµãF£®ÇóÖ¤£ºDF=DC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÁÐÊý±íÖзֱð¸ø³öÁ˱äÁ¿yÓë±äÁ¿xÖ®¼äµÄ¶ÔÓ¦¹Øϵ£¬ÆäÖÐÊÇ·´±ÈÀýº¯Êý¹ØϵµÄÊÇ£¨¡¡¡¡£©
A£®
 x 1 2 4
 y 6 7 8 9
B£®
 1 2
 y 4 3
C£®
 x 1 3 4
 y 9 8 7 6
D£®
 x 1 2
 y 1 0.5 $\frac{1}{3}$ 0.25

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬¡÷CAB£¬¡÷CDE¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬MÊÇDBÖе㣬ÇóÖ¤£ºCM¡ÍAE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÅ×ÎïÏßy=ax2+2£¨a+1£©x+$\frac{3}{2}$£¨a¡Ù0£©ÓëxÖá½»ÓÚA£¨x1£¬0£©¡¢B£¨x2£¬0£©£¨x1£¼x2£©Á½µã£¬ÓëyÖá½»ÓÚCµã£®¾­¹ýµÚÈýÏóÏÞÖеĶ¨µãD£®
£¨1£©Ö±½Óд³öC¡¢DÁ½µãµÄ×ø±ê£®
£¨2£©µ±x=x0ʱ£¬¶þ´Îº¯ÊýµÄÖµ¼ÇסΪy0£¬Èô´æÔڵ㣨x0£¬y0£©£¬Ê¹y0=x0³ÉÁ¢£¬Ôò³Æµã£¨x0£¬y0£©ÎªÅ×ÎïÏßÉϵIJ»¶¯µã£¬ÇóÖ¤£ºÅ×ÎïÏßy=ax2+2£¨a+1£©x+$\frac{3}{2}$´æÔÚÁ½¸ö²»¶¯µã£®
£¨3£©µ±¡÷ABDµÄÃæ»ýµÈÓÚ¡÷CBDʱ£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÔÚÊý$\frac{4}{3}$£¬-1£¬0£¬¦Ð£¬-4$\frac{1}{2}$£¬-0.02ÖУ¬
¢ÙÕýÊý$\frac{4}{3}$£¬¦Ð£» ¢Ú¸ºÊý-1£¬-4$\frac{1}{2}$£¬-0.02£»¢ÛÕûÊý-1£¬0£»¢Ü·ÖÊý$\frac{4}{3}$£¬-4$\frac{1}{2}$£¬-0.02£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸