精英家教网 > 初中数学 > 题目详情
通常,我们把长方形和正方形统称为矩形.如图1,是一个长为2a,宽为2b的矩形ABCD,若把此矩形沿图中的虚线用剪刀均分为4块小长方形,然后按照图2的形状拼成一个正方形MNPQ.
(1)分别从整体和局部的角度出发,计算图2中阴影部分的面积,可以得到等式 _________ 
(2)仔细观察长方形ABCD与正方形MNPQ,可以发现它们的 _________ 相同, _________ 不同.(选填“周长”或“面积”)
(3)根据上述发现,猜想结论:用总长为36米的篱笆围成一个矩形养鸡场,可以有许多不同的围法.在你围的所有矩形中,面积最大的矩形的面积是 _________ 2
(1)(a+b)2﹣(a﹣b)2=4ab;(2)周长,面积;(3)81.

试题分析:(1)整体上求出内部的小正方形的边长,然后用大正方形的面积减去小正方形的面积就是阴影部分的面积,从局部考虑,求出四个小矩形的面积就是阴影部分的面积;
(2)从图2的面积比图1的面积大里面小正方形的面积考虑;
(3)根据(2)的结论,周长相等的情况下,正方形的面积比矩形的面积大,所以围成的正方形的面积最大,然后根据正方形进行计算即可.
解:(1)整体考虑:里面小正方形的边长为a﹣b,
∴阴影部分的面积=(a+b)2﹣(a﹣b)2
局部考虑:阴影部分的面积=4ab,
∴(a+b)2﹣(a﹣b)2=4ab;
(2)图1周长为:2(2a+2b)=4a+4b,
面积为:4ab,
图2周长为:4(a+b)=4a+4b,
面积为(a+b)2=4ab+(a﹣b)2≥4ab,
当且仅当a=b时取等号;
∴周长相同,面积不相同;
(3)根据(2)的结论,围成正方形时面积最大,
此时,边长为36÷4=9米,
面积=92=81米2
故答案为:(1)(a+b)2﹣(a﹣b)2=4ab;(2)周长,面积;(3)81.
点评:本题考查了完全平方公式的几何背景,结合图形的特点,根据面积找出里面的规律是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

(      ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

下列由火柴棒拼出的一列图形中,第n个图形由n个正方形组成,如果第n个图形火柴棒的根数是s, 通过观察可以发现:则s=____ ___

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

多项式x2+1加上一个整式后是含x的二项式的完全平方式.
例题:x2+1+ _________ =(x+1)2
(1)按上例再写出两个加上一个单项式后是含x的二项式的完全平方式的式子(不能用已知的例题):
①x2+1+ _________ =(x﹣1)2
②x2+1+ _________ =(x2+1)2
(2)按上例写出一个加上一个多项式后是一个含x的二项式的完全平方式
x2+1+ _________ =(x2+1)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

用简便方法计算:20012﹣4002×2000+20002= _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图1可以用来解释a2﹣b2=(a+b)(a﹣b).那么通过图2面积的计算,验证了一个恒等式,此等式是 _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知x2﹣7x+1=0,求x2+x﹣2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知(19x﹣31)(13x﹣17)﹣(13x﹣17)(11x﹣23)可因式分解成(ax+b)(8x+c),其中a,b,c均为整数,则a+b+c=(  )
A.﹣12B.﹣32C.38D.72

查看答案和解析>>

同步练习册答案