精英家教网 > 初中数学 > 题目详情

【题目】在△ABC与△A′B′C′中,有下列条件:(1) ,(2) ;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有(
A.1组
B.2组
C.3组
D.4组

【答案】C
【解析】解:共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似. 故选C.
【考点精析】本题主要考查了相似三角形的判定的相关知识点,需要掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,BC为⊙O切线,连接A、C两点,交⊙O于点D,BE=CE,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=CD2OE;
(3)若cos∠BAD= ,BE=6,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小米是一个爱动脑筋的孩子,他用如下方法作∠AOB的角平分线: 作法:如图,

⑴在射线OA上任取一点C,过点C作CD∥OB;
⑵以点C为圆心,CO的长为半径作弧,交CD于点E;
⑶作射线OE.
所以射线OE就是∠AOB的角平分线.请回答:小米的作图依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应市委和市政府绿色环保,节能减排的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:

进价(元/只)

售价(元/只)

甲种节能灯

30

40

甲种节能灯

35

50

(1)求幸福商场甲、乙两种节能灯各购进了多少只?

(2)全部售完100只节能灯后,商场共计获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元.

(1)求该商场购进甲、乙两种商品各多少件?

(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,过点(x1 , 0),﹣3<x1<﹣2,对称轴为直线x=﹣1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④3b+2c>0,其中正确的结论有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,BC=6cm.射线 AGBC,点 E 从点 A 出发沿射线 AG 2cm/s 的速度运动,当点 E 先出发 1s 后,点 F 也从点 B 出发沿射线 BC cm/s 的速度运动分别连结 AF,CE.设点 F 运动时间为 t(s),其中 t>0.

(1) t 为何值时,∠BAF<BAC;

(2) t 为何值时,AE=CF;

(3) t 为何值时,SABF+SACE<SABC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c的顶点为D(﹣1,2),其部分图象如图所示,给出下列四个结论: ①a<0; ②b2﹣4ac>0;③2a﹣b=0;④若点P(x0 , y0)在抛物线上,则ax02+bx0+c≤a﹣b+c.其中结论正确的是(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知BD垂直平分AC∠BCD=∠ADFAF⊥AC

1)证明四边形ABDF是平行四边形;

2)若AF=DF=5AD=6,求AC的长.

查看答案和解析>>

同步练习册答案