4£®ÔÚÕý·½ÐÎABCDÖУ¬ÓÐÒ»Ö±¾¶ÎªCDµÄ°ëÔ²£¬Ô²ÐÄΪµãO£¬CD=2£¬ÏÖÓÐÁ½µãE¡¢F£¬·Ö±ð´ÓµãA¡¢µãCͬʱ³ö·¢£¬µãEÑØÏ߶ÎADÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãDÔ˶¯£¬µãFÑØÏ߶ÎCBÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãBÔ˶¯£¬µ±µãFÔ˶¯µ½µãBʱ£¬µãEÒ²Ëæֹ֮ͣÔ˶¯£®ÉèµãEÀ뿪µãAµÄʱ¼äΪt£¨s£©£¬»Ø´ðÏÂÁÐÎÊÌ⣺

£¨1£©Èçͼ¢Ù£¬¸ù¾ÝÏÂÁÐÌõ¼þ£¬·Ö±ðÇó³ötµÄÖµ£®
¢ÙEFÓë°ëÔ²ÏàÇУ»
¢Ú¡÷EOFÊǵÈÑüÈý½ÇÐΣ®
£¨2£©Èçͼ¢Ú£¬µãPÊÇEFµÄÖе㣬QÊÇ°ëÔ²ÉÏÒ»µã£¬ÇëÖ±½Óд³öPQ+OQµÄ×îСֵÓë×î´óÖµ£®

·ÖÎö £¨1£©¢ÙÈçͼ£¬ÉèEFÓë°ëÔ²ÏàÇÐÓÚµãG£¬ÓÉÇÐÏß³¤¶¨Àí¿ÉÖªED=EG£¬FC=FG£¬ÔÚRt¡÷EHFÖУ¬ÀûÓù´¹É¶¨ÀíÁгö·½³Ì¼´¿É½â¾öÎÊÌ⣻
¢Ú·ÖÈýÖÖÇéÐÎÌÖÂÛ£¬·Ö±ðÁгö·½³ÌÇó½â¼´¿É£»
£¨2£©¢Ùµ±µãPÔÚ°ëÔ²ÉÏʱ£¬PQµÄ×îСֵΪ0£¬´ËʱPQ+OQµÄ×îСֵΪ1£®¢Úµ±µãFÔ˶¯µ½Bʱ£¬µãPÓëµãOÖ®¼äµÄ½áÂÛ×î´ó£¬µ±QÓëDÖغÏʱ£¬PQ+OQµÄÖµ×î´ó£»

½â´ð ½â£º£¨1£©¢ÙÈçͼ£¬ÉèEFÓë°ëÔ²ÏàÇÐÓÚµãG£¬

¹ýµãE×÷EH¡ÍBC£¬´¹×ãΪµãH£®Èçͼ¢Ù£¬
¡ßËıßÐÎABCDÊÇÕý·½ÐΣ¬
¡àAB=BC=CD=AD=2£¬¡ÏA=¡ÏB=¡ÏADC=¡ÏBCD=90¡ã£¬
¡àOD¡ÍAD£¬
¡àADÓë°ëÔ²ÏàÇÐÓÚµãD£¬
ͬÀí¿ÉÖ¤£ºBCÓë°ëÔ²ÏàÇÐÓÚµãC£¬
¡àED=EG=2-t£¬CF=FG=2t£¬
¡àEF=2+t£¬
¡ßEH¡ÍBC£¬´¹×ãΪµãH£¬¡à¡ÏBHE=90¡ã£¬
¡ß¡ÏA=¡ÏB=90¡ã£¬¡àËıßÐÎABHEÊǾØÐΣ¬
¡àEH=AB=2£¬BH=AE=t£¬
¡àHF=2-3t£¬
ÔÚ¡÷EHFÖУ¬¡ÏEHF=90¡ã£¬
¡àEH2+HF2=EF2£¬
¡à22+£¨2-3t£©2=£¨2+t£©2£¬
½âÕâ¸ö·½³Ì£¬µÃt1=1-$\frac{\sqrt{2}}{2}$£¼1£¬t2=1+$\frac{\sqrt{2}}{2}$£¾1£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
¡àµ±EFÓë°ëÔ²ÏàÇÐʱ£¬tµÄֵΪ1-$\frac{\sqrt{2}}{2}$£®

¢ÚÔÚ¡÷EDOÖУ¬¡ß¡ÏEDO=90¡ã£¬
¡àOE2=t2-4t+5£¬
ͬÀí¿ÉÖ¤£ºOF2=1+4t2£¬EF2=9t2-12t+8£¬
µÚÒ»ÖÖÇé¿ö£ºµ±OE=OFʱ£¬ÔòOE2=OF2£¬
¡àt2-4t+5=1+4t2£¬
½âÕâ¸ö·½³Ì£¬µÃt1=$\frac{2}{3}$£¼1£¬t2=-2£¼0£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
µÚ¶þÖÖÇé¿ö£ºµ±OE=EFʱ£¬ÔòOE2=EF2£¬
¡àt2-4t+5=9t2-12t+8£¬´Ë·½³ÌÎ޽⣬
µÚÈýÖÖÇé¿ö£ºµ±OF=EFʱ£¬ÔòOF2=EF2£¬
¡à1+4t2=9t2-12t+8£¬
½âÕâ¸ö·½³Ì£¬µÃt1=1£¬t2=1.4£¾1£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
×ÛÉÏËùÊö£ºµ±¡÷EOFÊǵÈÑüÈý½ÇÐÎʱ£¬tµÄֵΪ$\frac{2}{3}$»ò1£®

£¨2£©Èçͼ

¢Ùµ±µãPÔÚ°ëÔ²ÉÏʱ£¬PQµÄ×îСֵΪ0£¬´ËʱPQ+OQµÄ×îСֵΪ1£®
¢Úµ±µãFÔ˶¯µ½Bʱ£¬µãPÓëµãOÖ®¼äµÄ½áÂÛ×î´ó£¬µ±QÓëDÖغÏʱ£¬PQ+OQµÄÖµ×î´ó£¬×î´óÖµ=$\sqrt{{1}^{2}+£¨\frac{3}{2}£©^{2}}$+1=1+$\frac{\sqrt{13}}{2}$£®
¡àPQ+OQµÄ×îСֵΪ1£¬×î´óֵΪ1+$\frac{\sqrt{13}}{2}$£®

µãÆÀ ±¾Ì⿼²éÔ²×ÛºÏÌâ¡¢ÇÐÏß³¤¶¨Àí¡¢¹´¹É¶¨Àí¡¢Õý·½ÐεÄÐÔÖÊ¡¢µÈÑüÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»á¹¹½¨·½³Ì½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬¡÷ABCÖУ¬AB=BC£¬ÒÔABΪֱ¾¶µÄ¡ÑO½»ACÓÚµãD£¬ÇÒCD=BD£®
£¨1£©ÇóÖ¤£ºBCÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ÒÑÖªµãM¡¢N·Ö±ðÊÇAD¡¢CDµÄÖе㣬BMÑÓ³¤Ïß½»¡ÑOÓÚE£¬EF¡ÎAC£¬·Ö±ð½»BD¡¢BNµÄÑÓ³¤ÏßÓÚHF£¬ÈôDH=2£¬ÇóEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬¾ØÐÎABCDÖУ¬¶Ô½ÇÏßACµÄÖеãΪO£¬¹ýO×÷Ö±ÏßEF½»ADÓÚE£¬½»BCÓÚF£®
£¨1£©ÇóÖ¤£ºOE=OF£»
£¨2£©¹ýµãO×÷OG¡ÍEF£¬½»CDÓÚG£¬Á¬½ÓEG£¬ÇóÖ¤£ºAE2+CG2=EG2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªa+b=6£¬ab=2£¬Ôòa2+b2=32£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôa£¼b£¬ÔòÏÂÁи÷ʽÖÐÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®a+1£¾b+1B£®a-1£¼b-1C£®ac£¼bcD£®$\frac{a}{3}$£¾$\frac{b}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬ÒÑÖªOP¡ÎQR¡ÎST£¬ÔòÏÂÁеÈʽÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¡Ï1+¡Ï2-¡Ï3=90¡ãB£®¡Ï1-¡Ï2+¡Ï3=180¡ãC£®¡Ï2+¡Ï3-¡Ï1=180¡ãD£®¡Ï1+¡Ï2+¡Ï3=180¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÇóÏÂÁи÷ʽÖеÄxµÄÖµ£º
£¨1£©3£¨x-1£©2+1=28
£¨2£©-27£¨2x-1£©3=-64
£¨3£©|x|=2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Òòʽ·Ö½â£º
£¨1£©a3b2-a£»
£¨2£©£¨x+2£©£¨x+4£©+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¿Î¼ä£¬Ð¡Ã÷ÄÃ×ÅÀÏʦµÄµÈÑüÖ±½ÇÈý½Ç°åÍ棬²»Ð¡Ðĵôµ½Á½Ç½Ö®¼ä£¬ÈçͼËùʾ£®
£¨1£©ÊÔÅжÏDCÓëBEµÄÊýÁ¿¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©´ÓÈý½Ç°åµÄ¿Ì¶È¿ÉÖªAC=25cm£¬ÇëÄã°ïСÃ÷Çó³öÆöǽשµÄºñ¶ÈaµÄ´óС£¨Ã¿¿éשµÄºñ¶ÈÏàµÈ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸