精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,∠C=60°,AB=4,过点B作BE⊥CD,垂足为E,连结AE.F为AE上一点,且∠BFE=60°.

(1)求证:△ABF∽△EAD;

(2)求BF的长.

【解析】根据菱形的性质及相似三角形的判定方法得到△ABF∽△EAD,再根据相似三角形的边对应成比例即可求得BF的长

 

(1)因为四边形ABCD为菱形,∠C=60°,所以∠D=120°

因为∠BFE=60°所以∠BFA=∠D=120°

因为AB∥DC,所以∠BAF=∠AED,

所以△ABF∽△EAD;……………4分

(2):∵BE⊥CD,

∴△BEC为Rt△.

∵AB=BC=4,∠C=60°,

∴EC=2

BE==

:∵BE⊥CD,AB∥DC,

∴EB⊥AB.

∴△ABE为Rt△.

AE==

∵△ABF∽△EAD,

∴AB /AE =BF/ AD .

∴BF=…………………8分

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案