精英家教网 > 初中数学 > 题目详情

【题目】如图,□ABCD中,点EAB边的中点,延长DECB的延长线于点F

求证:ADE≌△BFE

DEABDEAB,连接EC,求∠FEC的度数.

【答案】 见解析;⑵ FEC=135°

【解析】

1)由平行四边形的性质证得∠A=FBE,∠ADE=F,再由点EAB中点,得AE=BE,即证得ADE≌△BFE

2)由□ABCDABDCAB=CD ,由DEABDEAB易证∠CDF=90°,可得∠DEC =45°,从而可得结论.

四边形ABCD是平行四边形

ADBC

A=ABF

EAB的中点

AE=BE

ABEACD

ADE≌△BFE

四边形ABCD是平行四边形

ABDCAB=CD

CDF=BEF

DEAB

BEF=90°

CDF=90°

DE=AB

DE=DC

DEC=DCE=45°

FEC=135°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A1的坐标为(10),A2y轴的正半轴上,且∠A1A2O30°,过点A2A2A3A1A2垂足为A2,交x轴于点A3过点A3A3A4A2A3,垂足为A3,交y轴于点A4,过点A4A4A5A3A4,垂足为A4x轴于点A5:过点A5A5A6A4A5A5A6A4A5垂足为A5,交y轴于点A6按此规律进行下去,则点A2019的横坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2C1C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1x1y1),P2x2y2),与线段D1D2交于点P3x3y3),设x1x2x3均为正数,tx1+x2+x3,则t的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=-1的顶点为A,直线l过点P0m)且平行于x轴,与抛物线交于点B和点C.若AB=ACBAC=90°,则m=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数,下列结论中不正确的是(

A.图象必经过点 B. 的增大而增大

C.图象在第二,四象限内D.,则

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:有一组对角为直角的四边形叫做对直角四边形.如图1,四边形ABCD中,A=C=90°,则四边形ABCD对直角四边形

1对角线相等的对直角四边形是矩形______命题;(填

2)如图2,在对直角四边形ABCD中,DAB90°AD+CD=AB+BC.试说明ADC的面积与ABC的面积相等;

3)如图3,在ABC中,C=90°AC=6BC=8,过AB的中点D作射线DPAC,交BC于点OBDPADP的角平分线分别交BCAC于点EF

图中是对直角四边形的是______

OP的长是______时,四边形DEPF为对直角四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=EAD边上的一点(E与点A和点D不重合)BE的垂直平分线交AB于点M,交DC于点N.

(1)证明:MN = BE.

(2)AE=,四边形ADNM的面积为S,写出S关于的函数关系式.

(3)AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=10°,点POB上.以点P为圆心,OP为半径画弧,交OA于点P1(点P1与点O不重合),连接PP1;再以点P1为圆心,OP为半径画弧,交OB于点P2(点P2与点P不重合),连接P1 P2;再以点P2为圆心,OP为半径画弧,交OA于点P3(点P3与点P1不重合),连接P2 P3;……

请按照上面的要求继续操作并探究:

P3 P2 P4=_____°;按照上面的要求一直画下去,得到点Pn若之后就不能再画出符合要求点Pn+1了,则n=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

查看答案和解析>>

同步练习册答案