精英家教网 > 初中数学 > 题目详情
如图,PA与⊙O相切于点A,PC经过⊙O的圆心且与该圆相交于两点B、C,若PA=4,PB=2,则sinP=   
【答案】分析:连接OA,先利用勾股定理求出⊙O的半径长,再根据三角函数的定义解答即可.
解答:解:连接OA,设⊙O的半径为r,则OP=OB+BP=r+2,
因为PA与⊙O相切于点A,所以OA⊥AP,
根据勾股定理得,OP2=OA2+AP2,即(r+2)2=r2+42,解得,r=3,
故sinP===
点评:此题比较简单,解答此题的关键是连接OA,利用切线的性质构造出直角三角形,再根据三角函数的定义解答即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为
26°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郑州模拟)如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧
CBA
上一点,若∠ABC=31°,则∠P的度数为
28°
28°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为
4
73
5
4
73
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)求弦AB的长;
(3)过P、B两点的直线是否是⊙O的切线,说明理由.

查看答案和解析>>

同步练习册答案