精英家教网 > 初中数学 > 题目详情
16.如图,已知点A,C在反比例函数y=$\frac{a}{x}$(a>0)的图象上,点B.D在反比例函数y=$\frac{b}{x}$(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=3,AB与CD的距离为8,则a-b的值是15.

分析 利用反比例函数k的几何意义,结合相关线段的长度来求a-b的值.

解答 解:如图,由题意知:
a-b=3•OE,
a-b=5•OF,
又∵OE+OF=8,
∴OE=5,OF=3,
∴a-b=15.
故答案是15.

点评 本题考查了反比例函数图象上点的坐标特征.此题借助于方程组来求得相关系数的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.计算:$\sqrt{12}$+|$\sqrt{3}$-2|-2tan60°+($\frac{1}{3}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列方程中,是二元一次方程的是(  )
A.8x2+1=yB.y=8x+1C.y=$\frac{8}{x}$D.xy=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某一天,水果经营户老刘从水果批发市场批发苹果和芒果共40kg到市场去卖,已知苹果和芒果当天的批发价和零售价如表所示:
 品名 苹果 芒果
 批发价(元/kg) 3 4
 零售价(元/kg) 4 7
(1)如果当天他卖完这些苹果和芒果共获利60元,这天他批发的苹果和芒果分别是多少千克?
(2)假设老刘带了150元去水果批发市场批发苹果和芒果,并且当天都能卖完所批水果,老刘该如何进货,才能使得所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如果2x=7,那么x=3.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:3.75×(2$\frac{3}{5}$-1$\frac{2}{3}$)+85%÷3$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知抛物线C:y1=a(x-h)2-1,直线l:y2=kx-kh-1.
(1)求证:直线l恒过抛物线C的顶点;
(2)当a=-1,m≤x≤2时,y1≥x-3恒成立,求m的最小值;
(3)当0<a≤2,k>0时,若在直线l下方的抛物线C上至少存在两个横坐标为整数的点,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下面四个图形中,既是中心对称图形又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.当k≠0时,一次函数y=kx+k和反比例函数y=$\frac{k}{x}$在同一直角坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案