精英家教网 > 初中数学 > 题目详情
已知a、b为给定的实数,且1<a<b,那么1,a+1,2a+b,a+b+1这四个数据的平均数与中位数的差的绝对值是
1
4
1
4
分析:先算出四个数的平均数,再根据中位数的定义找出中位数,再进行相减,然后求出平均数与中位数之差的绝对值,即可求出答案.
解答:解:∵a,b为给定的实数,且1<a<b,
∴在这一组数据中平均数是:[1+(a+1)+(2a+b)+(a+b+1)]÷4=
4a+2b+3
4

∴在这一组数据中中位数是:[(a+1)+(a+b+1)]÷2=
2a+b+2
2

∴这四个数据的平均数与中位数之差是:
4a+2b+3
4
-
2a+b+2
2
=-
1
4

∴这四个数据的平均数与中位数之差的绝对值是:
1
4

故答案为:
1
4
点评:本题考查了中位数和平均数,解题的关键是找对中位数,此题属于基础题,比较容易.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

设抛物线C的解析式为:y=x2-2kx+(
3
+k)k,k为实数.
(1)求抛物线的顶点坐标和对称轴方程(用k表示);
(2)任意给定k的三个不同实数值,请写出三个对应的顶点坐标;试说明当k变化时,抛物线C的顶点在一条定直线L上,求出直线L的解析式并画出图象;
(3)在第一象限有任意两圆O1、O2相外切,且都与x轴和(2)中的直线L相切.设两圆在x轴上的切点分别为A、B(OA<OB),试问:
OA
OB
是否为一定值?若是,请求出该定值;若不是,请说明理由;
(4)已知一直线L1与抛物线C中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

设抛物线C的解析式为:y=x2-2kx+(数学公式+k)k,k为实数.
(1)求抛物线的顶点坐标和对称轴方程(用k表示);
(2)任意给定k的三个不同实数值,请写出三个对应的顶点坐标;试说明当k变化时,抛物线C的顶点在一条定直线L上,求出直线L的解析式并画出图象;
(3)在第一象限有任意两圆O1、O2相外切,且都与x轴和(2)中的直线L相切.设两圆在x轴上的切点分别为A、B(OA<OB),试问:数学公式是否为一定值?若是,请求出该定值;若不是,请说明理由;
(4)已知一直线L1与抛物线C中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2003•长沙)设抛物线C的解析式为:y=x2-2kx+(+k)k,k为实数.
(1)求抛物线的顶点坐标和对称轴方程(用k表示);
(2)任意给定k的三个不同实数值,请写出三个对应的顶点坐标;试说明当k变化时,抛物线C的顶点在一条定直线L上,求出直线L的解析式并画出图象;
(3)在第一象限有任意两圆O1、O2相外切,且都与x轴和(2)中的直线L相切.设两圆在x轴上的切点分别为A、B(OA<OB),试问:是否为一定值?若是,请求出该定值;若不是,请说明理由;
(4)已知一直线L1与抛物线C中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2003年湖南省长沙市中考数学试卷(解析版) 题型:解答题

(2003•长沙)设抛物线C的解析式为:y=x2-2kx+(+k)k,k为实数.
(1)求抛物线的顶点坐标和对称轴方程(用k表示);
(2)任意给定k的三个不同实数值,请写出三个对应的顶点坐标;试说明当k变化时,抛物线C的顶点在一条定直线L上,求出直线L的解析式并画出图象;
(3)在第一象限有任意两圆O1、O2相外切,且都与x轴和(2)中的直线L相切.设两圆在x轴上的切点分别为A、B(OA<OB),试问:是否为一定值?若是,请求出该定值;若不是,请说明理由;
(4)已知一直线L1与抛物线C中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.

查看答案和解析>>

同步练习册答案