精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为2的等边三角形ABC中,以B为圆心,AB为半径作,在扇形BAC内作⊙OABBC都相切,则⊙O的周长等于(  )

A. B. C. D. π

【答案】C

【解析】

连接OB并延长与交于点E,设AB与圆的切点为D,连接OD,由三角形ABC为等边三角形得到BABC,且∠ABC60°,再由以B为圆心,AB为半径作,得到BEBABC2,根据对称性得到∠ABE30°,由AB与圆O相切,利用切线的性质得到OD垂直于AB,在直角三角形BOD中,利用30°所对的直角边等于斜边的一半得到OD等于OB的一半,设ODOEx,可得出OB2x,由BO+OEBE2,列出关于x的方程,求出方程的解得到x的值,即为圆O的半径,即可求出圆O的周长.

解:连接OB并延长与交于点E,设AB与圆的切点为D,连接OD

∵△ABC为等边三角形,以B为圆心,AB为半径作

∴∠ABC60°BABCBE2

由对称性得到:∠ABE30°

AB为⊙O的切线,

ODAB

RtBOD中,∠ABE30°,设ODOEx

可得OB2x

OB+OEBE

2x+x2

解得:x

即⊙O的半径为

∴⊙O的周长为:π

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2015年12月16日,南京大报恩寺遗址公园正式对外开放.某校数学兴趣小组想测量大报恩塔的高度.如图,成员小明利用测角仪在B处测得塔顶的仰角α=63.5°,然后沿着正对该塔的方向前进了13.1m到达E处,再次测得塔顶的仰角β=71.6°.测角仪BD的高度为1.4m,那么该塔AC的高度是多少?(参考数据:sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.00,sin71.6°≈0.95,cos71.6°≈0.30,tan71.6°≈3.00)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超市有一种喜之郎果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长不计重合部分,两个果冻之间没有挤压至少为  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.

1)求yx的函数关系式,并写出x的取值范围;

2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点ECD的中点,将BCE沿BE折叠后得到BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若,则=__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,ADAE在同一直线上,ABAG在同一直线上.

1)小明发现DGBE,请你帮他说明理由.

2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.

3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出GHEBHD面积之和的最大值,并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB60米,坡角(即∠BAC)45°,BCAC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号)

(1)若修建的斜坡BE的坡比为1,求休闲平台DE的长是多少米?

(2)一座建筑物GH距离A33米远(AG33),小亮在D点测得建筑物顶部H的仰角(即∠HDM)30°.点BCAGH在同一个平面内,点CAG在同一条直线上,且HGCG,问建筑物GH高为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为1的正方形,E,FBD所在直线上的两点.若AE= EAF=135°,则以下结论正确的是(

A. DE=1 B. tanAFO= C. AF= D. 四边形AFCE的面积为

查看答案和解析>>

同步练习册答案