精英家教网 > 初中数学 > 题目详情
(2011•路南区一模)如图,在正方形ABCD的外侧作等边△DCE,则∠CBE的度数为
15°
15°
分析:根据等边三角形的性质及正方形的性质可得到BC=CE,从而可求得∠BCE的度数,则∠CBE的度数就不难求了.
解答:解:根据等边三角形和正方形的性质可知BC=CE,
∴∠BCE=90°+60°=150°,
∴∠CBE=(180°-150°)÷2=15°.
故答案为:15°.
点评:主要考查了正方形基本性质:①两组对边分别平行;四条边都相等;相邻边互相垂直;②四个角都是90°;③对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•路南区一模)在△ABC中,D、E分别是边AB、AC的中点,若BC=3,则DE的长是
3
2
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•路南区一模)从边长为a的大正方形纸板中挖去一个边长为b的小正方形后,将其截成四个相同的等腰梯形(如图①),可以拼成一个平行四边形(如图②).现有一平行四边形纸片(如图③)已知∠A=45°,AB=6,AD=4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的图①中阴影部分的面积为
12
2
12
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•路南区一模)如图,四边形OABC是面积为4的正方形,函数y=
k
x
(x>0)的图象经过点B.
(1)求函数的解析式;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数y=
k
x
(k>0)
的图象交于点E、F,请判断线段EC′与FA′的大小关系,并说明理由;
(3)将函数y=
k
x
的图象沿y轴向上平移使其过点C′,得到图象l1,直接说出图象l1是否过点A′?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•路南区一模)机器人“海宝”在某圆形区域按下列程序设计表演.其中,B、C在圆O上.
(1)请按程序补全下面图形;
(2)求BC的距离;
(3)求圆O的半径长.
(本题参考数据:sin67.4°=
12
13
,cos67.4°=
5
13
,tan67.4°=
12
5

查看答案和解析>>

同步练习册答案