精英家教网 > 初中数学 > 题目详情
12n
是整数,则正整数n的最小值是(  )
分析:根据12=22×3,若
12n
是整数,则12n一定是一个完全平方数,据此即可求得n的值.
解答:解:∵12=22×3,
∴n的正整数值最小是3.
故选B.
点评:本题考查了二次根式的意义,正确理解12n是完全平方数是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)观察一列数a1=3,a2=9,a3=27,a4=81,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是
3
3
;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a6=
36
36
,an=
3n
3n
;(可用幂的形式表示)
(2)如果想要求1+2+22+23+…+29的值,可令S10=1+2+22+23+…+29①将①式两边同乘以2,得
2S10=2+22+23+…+29+210
2S10=2+22+23+…+29+210
②,由②减去①式,得S10=
210-1
210-1

(3)若(1)中数列共有30项,设S30=3+9+27+81+…+a30,请利用上述规律和方法计算S30的值.
(4)设一列数1,2,4,8,…,2n-1的和为Sn,则Sn的值为
2n-1
2n-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)观察一列数a1=3,a2=9,a3=27,a4=81,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是
3
3
;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a6=
36
36
,an=
3n
3n
;(可用幂的形式表示)
(2)如果想要求1+2+22+23+…+210的值,可令S10=1+2+22+23+…+210①将①式两边同乘以2,得
2S10=2+22+23+…+210+211
2S10=2+22+23+…+210+211
②,由②减去①式,得S10=
211-1
211-1

(3)若(1)中数列共有20项,设S20=3+9+27+81+…+a20,请利用上述规律和方法计算S20的值.
(4)设一列数1,
1
2
1
4
1
8
,…,
1
2n-1
的和为Sn,则Sn的值为
2-
1
2n-1
2-
1
2n-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)观察一列数a1=3,a2=9,a3=27,a4=81,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是______;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a6=______,an=______;(可用幂的形式表示)
(2)如果想要求1+2+22+23+…+210的值,可令S10=1+2+22+23+…+210①将①式两边同乘以2,得______②,由②减去①式,得S10=______.
(3)若(1)中数列共有20项,设S20=3+9+27+81+…+a20,请利用上述规律和方法计算S20的值.
(4)设一列数1,
1
2
1
4
1
8
,…,
1
2n-1
的和为Sn,则Sn的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

12n
是整数,则正整数n的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案