【题目】如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.
(1)求证:DB=DE;
(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.
【答案】(1)见解析(2)36
【解析】试题分析:(1)据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE;(2)由(1)知,DB=DE,再由DF⊥BE,根据等腰三角形的三线合一的性质可得DF垂直平分BE,再由∠CDE=∠CED=∠BCD=30°,可得∠CDF=30°,因为CF=3,根据30°角直角三角形的性质可得DC=6,即可得AC=12,所以△ABC的周长为36.
试题解析:
(1)证明:∵△ABC是等边三角形,BD是中线,
∴∠ABC=∠ACB=60°.
∴∠DBC=30°(等腰三角形三线合一),
∵CE=CD,
∴∠CDE=∠CED.
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED=∠BCD=30°.
∴∠DBC=∠DEC.
∴DB=DE(等角对等边).
(2)∵DF⊥BE,由(1)知,DB=DE,
∴DF垂直平分BE,
∵∠CDE=∠CED=∠BCD=30°,
∴∠CDF=30°,
∵CF=3,
∴DC=6,
∵AD=CD,
∴AC=12,
∴△ABC的周长=3AC=36.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,∠BAC=60°,△ABC绕点C顺时针旋转,旋转角为α(0°<α<180°),点A、B的对应点分别是点D、E.
(1)如图1,当点D恰好落在边AB上时,试判断DE与AC的位置关系,并说明理由.
(2)如图2,当点B、D、E三点恰好在一直线上时,旋转角α=__°,此时直线CE与AB的位置关系是__.
(3)在(2)的条件下,联结AE,设△BDC的面积S1,△AEC的面积S2,则S1与S2的数量关系是_____.
(4)如图3,当点B、D、E三点不在一直线上时,(3)中的S1与S2的数量关系仍然成立吗?试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示,则下列说法不正确的是( )
A. 小刘家与超市相距3000米 B. 小刘去超市途中的速度是300米/分
C. 小刘在超市逗留了30分钟 D. 小刘从超市返回家比从家里去超市的速度快
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1 , x2 .
(1)求实数k的取值范围;
(2)是否存在实数k使得x1x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连接ED,试证明ED与⊙O相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句:①近似数0.010精确到千分位;②如果两个角互补,那么两个角一定是一个为锐角,另一个为钝角;③若线段AP=BP,则P一定是AB中点;④A与B两点间的距离是指连接A、B两点间的线段;⑤││=;⑥最大的负整数是-1,其中说法正确的是_________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= , n=;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ADC=∠EFC,∠3=∠C,可推得∠1=∠2.理由如下:
解:因为∠ADC=∠EFC(已知)
所以AD∥EF( ).
所以∠1=∠4( ),
因为∠3=∠C(已知),
所以AC∥DG( ).
所以∠2=∠4( ).
所以∠1=∠2(等量代换).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一块a×b×c的长方体铁块(如图1所示,a<b<c,单位:cm)放入一长方体(如图2所示)水槽中,并以速度20cm3/s匀速向水槽注水,直至注满为止.若将铁块a×c面放至水槽的底面,则注水全过程中水槽的水深y (cm)与注水时间t (s)的函数图象如图3所示(水槽各面的厚度忽略不计).已知a为5cm.
(1)填空:水槽的深度为cm,b=cm;
(2)求水槽的底面积S和c的值;
(3)若将铁块的b×c面放至水槽的底面,求注水全过程中水槽的水深y(cm)与注水时间t(s)的函数关系,写出t的取值范围,并画出图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com