精英家教网 > 初中数学 > 题目详情
精英家教网等腰△ABC,AB=AC,∠BAC=120°,P为BC上的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P处,三角板绕点P旋转到如图所示情形时,三角板的两边分别交BA的延长线于点E,交边AC于点F,连接EF,△BPE与△PFE是否相似?请说明理由.
分析:先根据已知条件证明△BPE∽△CFP,可得出
PE
PF
=
BE
PB
,然后即可证明△BPE∽△PFE.
解答:相似.
证明:∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°.
∵∠B+∠BEP=∠EPC,∠EPF=30°,
∴∠BEP=∠CPF.
∴△BPE∽△CFP.
PC
PF
=
BE
PE

∵P为BC上的中点,
∴BP=PC,
PB
PF
=
BE
PE

PE
PF
=
BE
PB

又∵∠B=∠EPF=30°,
∴△BPE∽△PFE.
点评:本题考查了相似三角形的判定与性质及等腰三角形的性质,难度适中,关键是掌握相似三角形的判定条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若等腰△ABC(AB=AC),能用一刀剪成两个等腰三角形,则∠A=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在等腰△ABC,AB=AC,分别过点B、C作两腰的平行线,经过点A的直线与两平行线分别交于点D、E,连接DC,BE,DC与AB边相交于点M,BE与AC边相交于点N.
(1)如图1,若DE∥CB,写出图中所有与AM相等的线段,并选取一条给出证明.
(2)如图2,若DE与CB不平行,在(1)中与AM相等的线段中找出一条仍然与AM相等的线段,并给出证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,OP与AC相交与点M,则下列结论:
①点O是△PBC的外心;②△MAO∽△MPC;③AC=AO+AP;④S△ABC=
4
5
S四边形AOCP
其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC,AB=AC=4,∠BAC=120°,请用圆规和直尺作出△ABC的外接圆.并计算此外接圆的半径.

查看答案和解析>>

同步练习册答案