【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB,
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.
【答案】(1)y=x2+x-3;(2)13.5;(3)存在,P1(-3,-3),P2(,3),P3( ,3).
【解析】
(1)根据OC=3OB,B(1,0),求出C点坐标(0,-3),把点B,C的坐标代入y=ax2+2ax+c,求出a点坐标即可求出函数解析式;
(2)过点D作DE∥y轴分别交线段AC于点E.设D(m,m2+2m-3),然后求出DE的表达式,把S四边形ABCD分解为S△ABC+S△ACD,转化为二次函数求最值;
(3)①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形.②平移直线AC交x轴于点E,交x轴上方的抛物线于点P2,P3,由题意可知点P2、P3的纵坐标为3,从而可求得其横坐标.
(1)∵B的坐标为(1,0),
∴OB=1.
∵OC=3OB=3,点C在x轴下方,
∴C(0,-3).
∵将B(1,0),C(0,-3)代入抛物线的解析式得:
,解得:a=,C=-3,
∴抛物线的解析式为y=x-3.
(2)如图1所示:过点D作DE∥y,交AC于点E.
∵x=-=-,B(1,0),
∴A(-4,0).
∴AB=5.
∴S△ABC=ABOC=×5×3=7.5.
设AC的解析式为y=kx+b.
∵将A(-4,0)、C(0,-3)代入得:
,解得:k=-,=-3,
∴直线AC的解析式为y=-x-3.
设D(a,a2+a-3),则E(a,-a-3).
∵DE=-(a+2)2+3,
∴当a=-2时,DE有最大值,最大值为3.
∴△ADC的最大面积=DEAO=×3×4=6.
∴四边形ABCD的面积的最大值为13.5.
(3)存在.
①如图2,过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形.
∵C(0,-3),令x-3=-3,
∴x1=0,x2=-3.
∴P1(-3,-3).
②平移直线AC交x轴于点E2,E3,交x轴上方的抛物线于点P2,P3,当AC=P2E2时,四边形ACE2P2为平行四边形,当AC=P3E3时,四边形ACE3P3为平行四边形.
∵C(0,-3),
∴P2,P3的纵坐标均为3.
令y=3得:x-3=3,解得;x1=,x2=.
∴P2(,3),P3(,3).
综上所述,存在3个点符合题意,坐标分别是:P1(-3,-3),P2(,3),P3( ,3).
科目:初中数学 来源: 题型:
【题目】为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为(分)、(分)、(分)、(分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:
(1)这次随机抽取的学生共有多少人?
(2)请补全条形统计图.
(3)这个学校九年级共有学生人,若分数为分(含分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生大约有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017山东日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是( )
A. ①②③ B. ③④⑤ C. ①②④ D. ①④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15°,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请仅用无刻度的直尺,根据下列条件分别在图(1),图(2),(3)中作出△ABC的边AB上的高CD.
(1)如图(1),以锐角三角形ABC的边AB为直径的圆,与边BC、AC分别交于点E、F;
(2)如图(2),以等腰三角形ABC的底边AB为直径的圆,顶点C在圆内;
(3)如图(3),以钝角三角形ABC的一短边AB为直径的圆,与最长的边AC相交于点E.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是:( )
A.函数y2的图象开口向上
B.函数y2的图象与x轴没有公共点
C.当x>2时,y2随x的增大而减小
D.当x=1时,函数y2的值小于0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆的半径OC=2,线段BC与CD是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com