分析 (1)首先证明出PM=PN,再证明出∠NPM=90°即可;
(2)首先证明出∠PMN=∠PNM和∠OPN=∠OPN,利用相似三角形的性质即可得到答案.
解答 (1)解:△PMN是等腰直角三角形,
理由:∵y=x,
∴∠PON=∠POM=45°.
∴PN=PM.
∵四边形ONPM内接于圆,
∴∠MON+∠NPM=180°.
∵∠MON=90°,
∴∠NPM=90°.
即△PMN是等腰直角三角形.
(2)∵△PMN是等腰直角三角形,
∴∠PMN=∠PNM
∵∠OPN=∠OPN,
∴△PNG∽△PON.
∴△PNG的周长:△PON的周长=PG:PN=3:4.
∴△PNG的周长=6,
∴△PON的周长=8.
点评 本题主要考查了圆的综合题,涉及到等腰三角形的判定与性质、园内接四边形的性质、相似三角形的判定与性质,解题的关键是证明(1)的关键是得到∠NPM=90°,证明(2)的关键是得出△PNG∽△PON.
科目:初中数学 来源: 题型:解答题
获奖等级 | 频数 |
一等奖 | a |
二等奖 | b |
三等奖 | 275 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com