精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC 中,ADBC 于点 D,点 E BD边上一点,过点 E EGAD,分别交 AB CA 的延长线于点 FG,∠AFG=G

1)证明:△ABD≌△ACD

2)若∠B=40°,直接写出∠FAG= °

【答案】(1)详见解析;(2)80

【解析】

1)由已知条件可直接得到AD为公共边,∠ADB=∠ADC90°,据两直线平行间接可得到∠CAD=∠BAD,即可判定△ABD≌△ACDASA);
2)利用(1)中结论易求得∠C度数,根据三角形外角的性质即可得的度数.

解:(1

中,

2)解:由(1可得:

∵∠B40°

∴∠C40°

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm1cm,FQ⊥BC,分别交AC、BC于点PQ,设运动时间为t秒(0<t<4).

(1)连接EF,若运动时间t=   时,EF⊥AC;

(2)连接EP,当△EPC的面积为3cm2时,求t的值;

(3)△EQP∽△ADC,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.

(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;

(2)小明选择哪家快递公司更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:

甲:8,7,10,7,8; 乙:9,5,10,9,7;

(1)将下表填写完整:

平均数

极差

方差

3

1.2

8

3.2

(2)根据以上信息,若你是教练,选择谁参加射击比赛,理由是什么?

(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会 .(填变大或变小或不变

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点坐标为M14),且经过点N23),与x轴交于AB两点(点A在点B左侧),与y轴交于点C

1)求抛物线的解析式;

2)若直线y=kx+t经过CM两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;

3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过AB两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

已知点D为等边△ABC 的边AB所在直线上一动点(点D与点A和点B不重合),连接CD,以CD为边在CD上方作等边△CDE,连接 AE

操作发现:

1)如图1,点D在边AB上,则 AEBD 有怎样的数量关系? 说明理由;

类比猜想:

2)如图2,若点D在边BA延长线上,则 AEBD有怎样的数量关系? 说明理由;

拓广探究:

3)如图3,点D在边AB上,以CD为边分别在CD下方和上方作等边△CDF 和等边△CDE,连接 AEBF,直接写出AEBF AB的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠C90°AD是∠BAC的平分线,DEABEFAC上,BDDF

1)证明:CFEB

2)证明:ABAF+2EB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程: (1) x﹣1=(1﹣x2 ; (2) x2﹣2(x + 4)= 0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将点A(31)绕原点O逆时针旋转90°到点B,则点B的坐标为__________________

查看答案和解析>>

同步练习册答案