【题目】如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2010,最少经过几次操作 ( )
A. 6 B. 5 C. 4 D. 3
【答案】C
【解析】试题分析:先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.
解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,
∵△ABC面积为1,
∴S△A1B1B=2.
同理可得,S△C1B1C=2,S△AA1C=2,
∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;
同理可证△A2B2C2的面积=7×△A1B1C1的面积=49,
第三次操作后的面积为7×49=343,
第四次操作后的面积为7×343=2401.
故按此规律,要使得到的三角形的面积超过2015,最少经过4次操作.
故选C.
科目:初中数学 来源: 题型:
【题目】在△ABC中,已知D为直线BC上一点,若∠ABC=x°,∠BAD=y°.
(1)若CD=CA=AB,请求出y与x的等量关系式;
(2)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);
(3)如果把(2)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】过直线l外一点P用直尺和圆规作直线l的垂线的方法是:以点P为圆心,大于点P到直线l的距离长为半径画弧,交直线l于点A、B;分别以A、B为圆心,大于AB长为半径画弧,两弧交于点C.连结PC,则PC⊥AB.
请根据上述作图方法,用数学表达式补充完整下面的已知条件,并给出证明.
已知:如图,点P、C在直线l的两侧,点A、B在直线l上,且 , .求证:PC⊥AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列多项式中是完全平方式的是( )
A. 2x2+4x-4 B. 16x2-8y2+1 C. 9a2-12a+4 D. x2y2+2xy+y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能确定△ABC为直角三角形的条件有( )
A.2个 B.3个 C.4个 D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列运用平方差公式计算,错误的是( )
A. (a+b)(a﹣b)=a2﹣b2 B. (2x+1)(2x﹣1)=2x2﹣1
C. (x+1)(x﹣1)=x2﹣1 D. (﹣3x+2)(﹣3x﹣2)=9x2﹣4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com