精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB=CDEFGH分别为ADBCBDAC的中点,顺次连接EGFH

1)猜想四边形EGFH是什么特殊的四边形,并说明理由;

2)当∠ABC与∠DCB满足什么关系时,四边形EGFH为正方形,并说明理由;

3)猜想:∠GFH、∠ABC、∠DCB三个角之间的关系.直接写出结果____________.

【答案】1)菱形;(2)∠ABC+DCB=90°;(3)∠GFH+ABC+DCB=180°或∠GFH+ABC-DCB=180°

【解析】

1)根据三角形中位线的性质得到EGABEHCDHFABEGABHFAB,根据菱形的判定定理即可得到结论;

2)根据平行线的性质得到∠ABC=HFC,∠DCB=GFB,根据平角的定义得到∠GFH=90°,于是得到结论;

3)由平行线的性质得到∠ABC=HFC,∠DCB=GFB,根据平角的定义即可得到结论.

1)四边形EGFH是菱形.理由如下:

EFGH分别为ADBCBDAC的中点,

EGABEHCDHFABEGABHFAB

∴四边形EGFH是平行四边形,EG=EH

∴四边形EGFH是菱形;

2)当∠ABC+DCB=90°时,四边形EGFH为正方形,

理由:∵GFCDHFAB

∴∠ABC=HFC,∠DCB=GFB

∵∠ABC+DCB=90°,

∴∠GFH=90°,

∴菱形EGFH是正方形;

3)当∠ABC+DCB180°时,∠GFH+ABC+DCB=180°.

理由如下:

GFCDHFAB

∴∠ABC=HFC,∠DCB=GFB

∵∠BFG+GFH+HFC=180°,

∴∠GFH+ABC+DCB=180°.

当∠ABC+DCB=180°时,∠GFH=0°,四边形EGFH不存在,∠GFH+ABC+DCB=180°;

当∠ABC+DCB180°时,∠GFH+ABC﹣∠DCB=180°.

综上所述:∠GFH+ABC+DCB=180°或∠GFH+ABC-DCB=180°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC面积为1,第一次操作:分别延长ABBCCA至点A1B1C1,使A1B=ABB1C=BCC1A=CA,顺次连接A1B1C1,得到△A1B1C1.第二次操作:分别延长A1B1B1C1C1A1至点A2B2C2,使A2B1=A1B1B2C1=B1C1C2A1=C1A1,顺次连接A2B2C2,得到△A2B2C2按此规律,第n次操作后,得到△AnBnCn,要使△AnBnCn的面积超过2020,则至少需要操作__________次.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点PBC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF=SABC;④BE+CF=EF.上述结论中始终正确的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新定义:我们把只有一组对角是直角的四边形叫做准矩形.
(1)图①、图②均为3×3的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.线段AB、BC的端点均在格点上,在图①、图②中各画一个准矩形ABCD,要求:准矩形ABCD的顶点D在格点上,且两个准矩形不全等.

(2)如图③,正方形ABCD的边长为4,准矩形ABMN的顶点M、N分别在正方形ABCD的边上.若准矩形ABMN的一条对角线长为5,直接写出此时该准矩形的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成证明并写出推理根据:如图,直线分别与直线交于点和点,射线分别与直线交于点,且,则有何数量关系?并说明理由.

解:的数量关系为,理由如下:

(已知)

//

(已知)

-

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)和正比例函数y= x的图象如图所示,则方程ax2+(b﹣ )x+c=0(a≠0)的两根之和( )

A.大于0
B.等于0
C.小于0
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表.

A种产品

B种产品

成本(万元/件)

2

5

利润(万元/件)

1

3


(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,求工厂的最大利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从甲、乙两名射击选手中选出一名选手参加省级比赛,现对他们分别进行5次射击测试,成绩分别为(单位:环)甲:56798;乙:84869

1)甲运动员5次射击成绩的中位数为________环,极差是________环;乙运动员射击成绩的众数为________环.

2)已知甲的5次成绩的方差为2,通过计算,判断甲、乙两名运动员谁的成绩更稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两个等边△ABC和△DEF(DEAB)如图所示摆放,点DBC上的一点(BC点外).把△DEF绕顶点D顺时针旋转一定的角度,使得边DEDF与△ABC的边(BC边外)分别相交于点MN

1)∠BMD和∠CDN相等吗?

2)画出使∠BMD和∠CDN相等的所有情况的图形.

3)在(2)题中任选一种图形说明∠BMD和∠CDN相等的理由.

查看答案和解析>>

同步练习册答案