精英家教网 > 初中数学 > 题目详情

【题目】如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为28块时,白色瓷砖块数为(  )

A. 27 B. 28 C. 33 D. 35

【答案】D

【解析】分析:观察题中三个图形的黑色瓷砖和白块瓷砖所拼的图形中,黑色瓷砖和白色瓷砖的个数的规律,列方程求解即可

详解:根据题目给出的图,我们可以看出:
1图中有黑色瓷砖12块,我们把12可以改写为3×4;白瓷砖的块数为(1+1)2-1
2图中有黑色瓷砖16块,我们把16可以改写为4×4;白瓷砖的块数为(2+1)2-1
1图中有黑色瓷砖20块,我们把20可以改写为5×4;白瓷砖的块数为(3+1)2-1
……

第n个图有(n+2)×4,也就是,有4n+8块黑色的瓷砖白瓷砖的块数为(n+1)2-1.

所以4n+8=28

解得n=5

所以白瓷砖的块数为(5+1)2-1=35.

故答案为:35.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知凸四边形ABCD中,∠A=∠C=90°.

(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DEBF位置关系并证明.

(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DEBF位置关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,PA点出发沿路径向终点运动,终点为B点;点QB点出发沿路径向终点运动,终点为APQ分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过PQE问:点P运动多少时间时,QFC全等?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=2,∠B=30°,P是BC边上一个动点,过点P作PD⊥BC,交△ABC的AB边于点D.若设PD为x,△BPD的面积为y,则y与x之间的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+2|+(b﹣1)2=0.

(1)求线段AB的长;

(2)C在数轴上对应的数为x,且x是方程2x﹣1=x+2的解,在数轴上是否存在点P,使PA+PB=PC,若存在,直接写出点P对应的数;若不存在,说明理由;

(3)在(1)的条件下,将点B向右平移5个单位长度至点B’,此时在原点O处放一挡板,一小球甲从点A处以1个单位长度/秒的速度向左运动;同时另一小球乙从点B’处以2个单位长度/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),求甲、乙两小球到原点的距离相等时经历的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.

(1)从火车站到码头怎样走最近,画图并说明理由;

(2)从码头到铁路怎样走最近,画图并说明理由;

(3)从火车站到河流怎样走最近,画图并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,ABCD,PAB=130°,PCD=120°.求APC度数.

小明的解题思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50°+60°=110°.

问题迁移:

(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=α,BCP=β.试判断CPD、α、β之间有何数量关系?请说明理由;

(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、α、β间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1 , 0),且﹣2<x1<﹣1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣ ;⑤2a<b+ ,正确的是(
A.①③
B.①②③
C.①②③⑤
D.①③④⑤

查看答案和解析>>

同步练习册答案