精英家教网 > 初中数学 > 题目详情
正方形ABCD中,点P在BC上,点E、F分别在AB、CD上,若AP=13cm,点A和点P关于EF对称,则EF=
13cm
13cm
分析:如图,由正方形的性质可以得出∠B=∠C=90°,AB=BC.再由点A和点P关于EF对称可以得出∠EHP=90°,作EG∥BC,就可以得出∠AME=∠APB,∠DGE=∠C=90°,可以得出△ABP≌△EGF,就可以得出AP=EF=13而得出结论.
解答:解:作EG∥BC交AP于M.
∴∠AME=∠APB,∠DGE=∠C.
∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC.
∴∠DGE=90°,
∴∠B=∠EGF.
∴∠EGC=90°.
∴四边形EBCG是矩形,
∴EG=BC.
∴AB=EG.
∵点A和点P关于EF对称,
∴∠EHP=90°,
∴∠HEM+∠EMH=90°.
∵∠HEM+∠EFG=90°,
∴∠HME=∠EFG,
∴∠APB=∠EFG.
在△ABP和△EGF中,
∠B=∠EGF
∠APB=∠EFG
AB=EG

∴△ABP≌△EGF,
∴AP=EF.
∵AP=13cm,
∴EF=13cm.
故答案为:13.
点评:本题考查了正方形的性质的运用,轴对称的性质的运用,直角三角形的性质的运用,全等三角形的判定与性质的运用,解答时证明△ABP≌△EGF是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为
1或5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在正方形ABCD中,点E,F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心精英家教网,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,正方形ABCD中,点A、B的坐标分别为(0,12),(8,6),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q从点(1,0)出发,以相同速度沿x轴正方向运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.
(1)正方形边长
 
,顶点C的坐标
 

(2)当P点在边AB上运动时,△OPQ的面积S与运动时间t(秒)的函数图象是如图②所示的抛物线的一部分,求点P,Q运动速度;
(3)求在(2)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等,若能,直接写出所有符合条件的t的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

观察本题的三个图形,思考下列问题
(1)如图1,正方形ABCD中,点M是CD上异于端点的任意一点,过点C作CN⊥BM于O,且交AD于N点.求证:BM=CN;
(2)如图2,等边△ABC中,点M是CA上异于端点的任意一点,过点C作射线CN交AB于点N、交BM于点O,且使∠BOC=120°.
请你判断此时BM与CN的大小关系,并证明你的结论.
(3)如图3,正n边形ABCDE…An中,点M是CD上异于端点的任意一点,过点C作射线CN交DE于点N、交BM于点O,且使BM=CN.设此时∠BOC的大小为y,请你写出y与n之间的函数关系式.
精英家教网

查看答案和解析>>

同步练习册答案