【题目】如图,AB=AE,∠B=∠E,BC=ED,点F是CD的中点,
(1)AC与AD相等吗?为什么?
(2)AF与CD的位置关系如何?说明理由;
(3)若P为AF上的一点,那么PC与PD相等吗?为什么?
【答案】(1)AC=AD,见解析;(2)AF⊥CD,见解析;(3)PC=PD,见解析.
【解析】
(1)由已知条件:AB=AE,∠B=∠E,BC=ED,可证得△ABC∽△AED,由此得AC=AD.
(2)由于△ACD是等腰三角形,根据等腰三角形三线合一的性质即可得到AF⊥CD.
(3)由(2)易知:AF垂直平分线段CD,即可根据线段垂直平分线的性质判定PC=PD.
(1)AC=AD.理由如下:
在△ABC与△AED中
∴△ABC≌△AED(SAS)
∴AC=AD
(2)AF⊥CD,理由如下:
∵AC=AD,点F是CD的中点
∴AF⊥CD
(3)PC=PD,理由如下:
∵点F是CD的中点,AF⊥CD
∴AF是CD的垂直平分线
∵点P在AF上
∴PC=PD
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MGMH=,其中正确结论为( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某办公大楼正前方有一根高度是米的旗杆,从办公楼顶端测得旗杆顶端的俯角是,旗杆底端到大楼前梯坎底边的距离是米,梯坎坡长是米,梯坎坡度,求大楼的高度.(精确到米,参与数据: , , )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,的顶点坐标为:,,.
(1)将向左平移2个单位长度,再向上平移1个单位长度,得.画出并写出的顶点坐标;
(2)请判断的形状并求它的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的的方格中,和的顶点都在格点上,且.利用平移、旋转变换,能使通过一次或两次变换后与完全重合.
(1)请你写出通过两次变换与完全重合的变换过程.
(2)通过一次旋转就能得到.请在图中标出旋转中心,并简要说明你是如何确定的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点C是直线l1上一点,在同一平面内,把一个等腰直角三角板ABC任意摆放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1,垂足为点N
(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系 (不必说明理由);
(2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量关系,并说明理由;
(3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,AM与MN之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:一次函数的表达式为y=x﹣1
(1)该函数与x轴交点坐标为 ,与y轴的交点坐标为 ;
(2)画出该函数的图象(不必列表);
(3)根据该函数的图象回答下列问题:
①当x 时,则y>0;
②当﹣2≤x<4时,则y的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成。
(1)若围成的面积为180m2,试求出自行车车棚的长和宽;
(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.
(1)试判断△PMN的形状,并证明你的结论;
(2)若CD=5,AC=12,求△PMN的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com