精英家教网 > 初中数学 > 题目详情

【题目】四边形ABCD中,∠A=140°∠D=80°.

(1)如图,若∠B=∠C,试求出∠C的度数;

(2)如图,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;

(3)如图,若∠ABC∠BCD的角平分线交于点E,试求出∠BEC的度数.

【答案】170°;(260°;(3110°

【解析】

1)根据四边形的内角和是360°,结合已知条件就可求解;

2)根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,进一步根据四边形的内角和定理进行求解;

3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB的度数,再进一步求得∠BEC的度数.

(1)在四边形ABCD,

∵∠A+∠B+∠C+∠D=360°, ∠A=140°,∠D=80°,∠B=∠C,

 ∴140°+∠C+∠C+80°=360°,∠C=70°.

(2)∵BE∥AD∠A=140°,∠D=80°,

∴∠BEC=∠D∠A+∠ABE=180°.

∴∠BEC=80°,∠ABE=40°.  

∵BE∠ABC的平分线,

∴∠EBC=∠ABE=40°.

∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.

(3)在四边形ABCD, ∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,

所以∠ABC+∠BCD=140°,从而有∠ABC+∠BCD=70°.

因为∠ABC∠BCD的角平分线交于点E,所以有∠EBC=∠ABC,∠ECB=∠BCD.

∠C=180°-(∠EBC +∠ECB)=180°-(∠ABC+∠BCD)=180°-70°=110°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是_______cm3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.

1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入管理费)

2)当每辆车的日租金为多少元时,每天的净收入最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P从(03)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点p2019次碰到矩形的边时点P的坐标为(  )

A. 14 B. 50 C. 83 D. 64

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

1

2

32x3y-2xy+-2x2y2

4)(2a+b)(b-2a-a-3b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直线ABDC,点P为平面上一点,连接APCP.

(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,DCP=20°时,求∠APC.

(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.

(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,AKC与∠APC有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一块直角三角板ABC(A=30°)的斜边AB与一个以r为半径的圆轮子相靠BD=1,r等于(  )

A. 2 B. C. 1.5 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPB是⊙O的切线,CD切⊙O于点EPCD的周长为12,∠APB=60°

求:(1PA的长;

2)∠COD的度数.

查看答案和解析>>

同步练习册答案