精英家教网 > 初中数学 > 题目详情
21、已知:如图,在△ABC中,AB=AC,D为BC上任意一点,过点D作DP⊥BC,分别交BA,CA或它们的延长线于点P,Q.
求证DP+DQ是定值.
分析:过点A作AM⊥BC于点M,作AN⊥DQ于点N,然后判定△AQP为等腰三角形,从而证明DP+DQ=2AM,问题得证.
解答:证明:过点A作AM⊥BC于点M,作AN⊥DQ于点N,(2分)
∴四边形AMDN为矩形.
∴AM=DN.
∵DP⊥BC,
∴∠B+∠P=90°.
∴∠C+∠DQC=90°.
又∵∠C=∠B,∠DQC=∠PQA
∴∠AQM=∠P.
∴△AQP为等腰三角形.
∴PN=QN.(4分)
∴DP+DQ=DN+NP+DQ
=DN+NQ+DQ
=2AM,(5分)
即DP+DQ是定值.
点评:本题考查了等腰三角形的性质,证明线段的和为定值的问题比较少见.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案