精英家教网 > 初中数学 > 题目详情
解下列方程:
(1)4x-3=2x+5;
(2)
2x+1
3
-
5x-1
6
=1.
考点:解一元一次方程
专题:计算题
分析:(1)方程移项合并,将x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.
解答:解:(1)移项合并得:2x=8,
解得:x=4;
(2)去分母得:4x+2-5x+1=6,
移项合并得:-x=3,
解得:x=-3.
点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

因式分解或利用因式分解计算
(1)3x2-27
(2)20042-2003×2005.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形AOBC中,对角线AB,OC相交于点E,双曲线y=
k
x
(k>0)经过A,E两点,作AM⊥OB,EN⊥OB,垂足分别为M,N.
(1)求证:AM=2EN;
(2)若平行四边形AOBC的面积为24,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l:y=
3
4
x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.
(1)点A坐标是
 
,点B的坐标
 
,BC=
 

(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)在(2)的条件下,可得点Q的横坐标为-
16
5
,在x轴上是否存在点M,使得MQ+MB的值最小?如果存在求出点M的坐标,如果不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个六位自然数
.
13xy54
是99的倍数(其中x、y是阿拉伯数字),试求950x+24y+1=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)3+4×(-2)
(2)1-(2-3)2×(-2)3
(3)(-
1
2
0+(-2)3+(
1
3
-1+|-2|
(4)-18÷
1
4
-(-2)×8;
(5)(-24)×(
1
8
-1
2
3
+
1
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,E在DC上,若DE:EC=1:2,则EF:BF=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

化算:3a-2b•2ab-2=
 
,(2m2n-2)•3m-3n3=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若3xny3-
1
2
xy1-2m
是同类项,则m-n=
 

查看答案和解析>>

同步练习册答案