精英家教网 > 初中数学 > 题目详情
已知:平面直角坐标系中,⊙A的圆心在x轴上,半径为1,⊙A沿x轴上向右平移.
(1)如图1,当⊙A与y轴相切时,点A的坐标为______;
(2)如图2,设⊙A以每秒1个单位的速度从原点左侧沿x轴向右平移,直线l:与x轴交于点B,交y轴于点C,问:在运动过程中⊙A与直线l有公共点的时间共几秒?
【答案】分析:(1)直接可以写出当⊙A与y轴相切时,点A的坐标,
(2)在直角三角形OBC中,OB=4,OC=3,由勾股定理得BC=5,设⊙A经过x秒后与直线l相切,过A点作BC的垂线,垂足为Q,AQ=1;①当⊙A在直线BC的左边与直线l相切时,AB=4-x,根据△BAQ∽△BCO的成比例线段求解;
②当⊙A直线l的右边与直线BC切时,AB=4-x,根据△BAQ∽△BCO的成比例线段求解.
解答:解:(1)已知圆的半径为1,
故当⊙A与y轴左侧相切时,点A的坐标为(-1,0),
故当⊙A与右轴左侧相切时,点A的坐标为(1,0),
即当⊙A与y轴相切时,点A的坐标为(-1,0)和(1,0),

(2)∵OB=4,OC=3,故BC=5,
设⊙A经过x秒后与直线BC相切,作AB的垂线,垂足为Q,则AQ=1;
①当⊙A直线BC的左边与直线l相切时,BC=4-x,
∴△BAQ∽△BCO,∴=,即=
解得x=
②当⊙A在直线的右边与直线l相切时,AB=x-4;
由△BAQ∽△BCO得,=,即=
解得x=
在运动过程中⊙A与直线l有公共点的时间共-=秒.
点评:本题主要考查直线与圆的位置关系和一次函数的综合题的知识点,解答本题的熟练掌握直线与圆的几种位置关系,此题有一点的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知在平面直角坐标系中,圆P的圆心坐标为(4,5),半径为3个单位长度,把圆P沿水平方向向左平移d个单位长度后恰好与y轴相切,则d的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在平面直角坐标系内,O为坐标原点,A、B是x轴上的两点,点A在点B的左侧,精英家教网二次函数y=ax2+bx+c(a≠0)的图象经过点A、B,与y轴相交于点C.
(1)如图情况下:a、c的符号之间有何关系?
(2)如果线段OC的长度是线段OA、OB长度的比例中项,试证a、c互为倒数;
(3)在(2)的条件下,如果b=-4,AB=4
3
,求a、c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•浙江一模)如图,已知在平面直角坐标系中,点A(4,0)、B(-3,0),点C在y轴正半轴上,且tan∠CAO=1,点Q是线段AB上的动点,过点Q作QE∥AC交BC于点E.
(1)求点C的坐标及直线BC的解析式;
(2)连结CQ,当△CQE的面积最大时,求点Q的坐标;
(3)若点P是线段AC上的点,是否存在这样的点P,使△PQE成为等腰直角三角形?若存在,试求出所有符合条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•樊城区模拟)如图,已知在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
m
x
(m≠0)的图象相交于A、B两点,且点B的纵坐标为-
1
2
,过点A作AC⊥x轴于点C,AC=1,OC=2.求:
(1)求反比例函数的解析式和一次函数的解析式;
(2)求不等式kx+b-
m
x
<0的解集(请直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:平面直角坐标系xOy中,点A(0,5),点B和点C是x轴上动点(点B在点C的左边),点C在原点的右边,点D是y轴上的动点.若C(3,0),且△BOD和△AOC全等,则点D的坐标为
(0,5)或(0,-5)或(0,3)或(0,-3)
(0,5)或(0,-5)或(0,3)或(0,-3)

查看答案和解析>>

同步练习册答案