精英家教网 > 初中数学 > 题目详情
如图是某地下商业街的入口,数学课外兴趣小组同学打算运用所学知识测量侧面支架最高点E到地面距离EF.经测量,支架立柱BC与地面垂直,即∠BCA=90°,且BC=1.5cm,点F、A、C在同一条水平线上,斜杆AB与水平线AC夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架边BE与AB夹角∠EBD=60°,又测得AD=1m。请你求出该支架边BE及顶端E到地面距离EF长度。
EB=4m    EF= 3.5(m)

分析:过B作BH⊥EF于点H,在Rt△ABC中,根据∠BAC=30°,BC=1.5,可求得AB的长度,又AD=1m,可求得BD的长度,在Rt△EBD中解直角三角形求得EB的长度,然后根据BH⊥EF,求得∠EBH=30°,继而可求得EH的长度,易得EF=EH+HF的值。
解:过B作BH⊥EF于点H,

∴四边形BCFH为矩形,BC=HF=1.5m,∠HBA=∠AC=30°。
在Rt△ABC中,∵∠BAC=30°,BC=1.5m,∴AB=3m。
∵AD=1m,∴BD=2m。
在Rt△EDB中,∵∠EBD=60°,∴∠BED=90°-60°=30°。
∴EB=2BD=2×2=4m。
又∵∠HBA=∠BAC=30°,∴∠EBH=∠EBD--∠HBD=30°,
∴EH=EB=2m。
∴EF=EH+HF=2+1.5=3.5(m)。
答:该支架的边BE为4m,顶端E到地面的距离EF的长度为3.5m.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,将长方形ABCD沿直线BD折叠,使C点落在C′处,BC′交AD于E.
(1)求证:BE=DE;
(2)若AD=8,AB=4,求△BED的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川广安3分)下列命题中正确的是【   】
A.函数的自变量x的取值范围是x>3
B.菱形是中心对称图形,但不是轴对称图形
C.一组对边平行,另一组对边相等四边形是平行四边形
D.三角形的外心到三角形的三个顶点的距离相等

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③
其中正确的是
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中,真命题是
A.对角线相等的四边形是等腰梯形
B.对角线互相垂直平分的四边形是正方形
C.对角线互相垂直的四边形是菱形
D.四个角相等的四边形是矩形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:已知,平行四边形中,为垂足,如果,则的度数是______________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF.

(1)判断四边形ADEF的形状,并证明你的结论;
(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.

(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.

查看答案和解析>>

同步练习册答案