A. | 2 | B. | 2.5 | C. | 3 | D. | 2$\sqrt{3}$ |
分析 连接AD构建菱形ABCD,根据等边三角形的性质得到AB=DC=BC=DE=5,∠ABC=∠ACB=∠DCE=∠E=60°,推出四边形ABCD为菱形,根据菱形的性质得到∠DBE=$\frac{1}{2}$∠ABC=30°,在Rt△BDE中利用勾股定理即可得出BD的长.
解答 解:连接AD,由题意知,△ABC≌△EDC,∠ACE=120°,
又∵△ABC是等边三角形,
∴AB=DC=BC=DE=5,∠ABC=∠ACB=∠DCE=∠E=60°,
∴∠ACE+∠ACB=120°+60°=180°,
∴B、C、E三点在一条直线上.
∴AB∥DC,
∴四边形ABCD为菱形,
∴∠DBE=$\frac{1}{2}$∠ABC=30°,
∵∠DBE+∠BDE+∠E=180°,
∴∠BDE=90°.
∵B、C、E三点在一条直线上,
∴BE=4,
∴BD=$\sqrt{B{E}^{2}-D{E}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
故选:D.
点评 本题考查的是等边三角形的性质及旋转的性质,熟知图形旋转后的图形与原图形全等的性质是解答此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 25个单位长度 | B. | 14个单位长度 | C. | 12个单位长度 | D. | 10个单位长度 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com