精英家教网 > 初中数学 > 题目详情
16.设一元二次方程ax2+bx+c=0的两根分别为x1与x2,则:
1.x1+x2=-$\frac{b}{a}$;x1x2=$\frac{c}{a}$.
2.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=-$\frac{b}{c}$.
3.x12+x22=$\frac{{b}^{2}-2ac}{{a}^{2}}$.
4.x12x2+x1x22=-$\frac{bc}{{a}^{2}}$.

分析 (1)由根与系数的关系,即可得出x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$;
(2)将x1+x2=-$\frac{b}{a}$、x1x2=$\frac{c}{a}$,代入$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$中,即可求出结论;
(3)将x1+x2=-$\frac{b}{a}$、x1x2=$\frac{c}{a}$,代入x12+x22=(x1+x22-2x1x2中,即可求出结论;
(4)将x1+x2=-$\frac{b}{a}$、x1x2=$\frac{c}{a}$,代入x12x2+x1x22=x1x2•(x1+x2)中,即可求出结论.

解答 解:1、∵一元二次方程ax2+bx+c=0的两根分别为x1与x2
∴x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.
故答案为:-$\frac{b}{a}$;$\frac{c}{a}$.
2、∵x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$,
∴$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{b}{c}$.
故答案为:-$\frac{b}{c}$.
3、∵x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$,
∴x12+x22=(x1+x22-2x1x2=$\frac{{b}^{2}-2ac}{{a}^{2}}$.
故答案为:$\frac{{b}^{2}-2ac}{{a}^{2}}$.
4、∵x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$,
∴x12x2+x1x22=x1x2•(x1+x2)=-$\frac{bc}{{a}^{2}}$.
故答案为:-$\frac{bc}{{a}^{2}}$.

点评 本题考查了根与系数的关系,熟练掌握两根之和等于-$\frac{b}{a}$、两根之积等于$\frac{c}{a}$是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.探究一:如图①,点E,D分别是正△ABC的边CB,AC延长线上的点,连接AE,DB,延长DB交AE于点F,已知△ABE≌△BCD.
(1)写出所有与∠BAE相等的角,并说明理由.
(2)求∠AFB的度数.
探究二:如图②,点E,D分别是正五边形ABCMN的边CB,MC延长线上的点,连结AE,DB,延长DB交AE于点F,若△ABE≌△BCD,则∠AFB的大小为108°度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,D、E、F分别为△ABC各边中点,AD、BE、CF交于O点,则图中面积相等的三角形共有(  )
A.15对B.18对C.30对D.33对

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为多少厘米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)计算$\sqrt{2}$($\frac{1}{\sqrt{2}}$-$\sqrt{2}$)-|$\sqrt{3}$-$\root{3}{-8}$|
(2)解方程组$\left\{\begin{array}{l}{2x+y=13}\\{x-2y=4}\end{array}\right.$
(3)解不等式1-$\frac{x-3}{6}$>$\frac{x}{3}$
(4)解不等式组$\left\{\begin{array}{l}{1+x>-2}\\{\frac{2x-1}{3}<1}\end{array}\right.$,并把它的解集表示在数轴上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)(-$\frac{1}{6}$)2÷($\frac{1}{2}$-$\frac{1}{3}$)2÷|-6|2×(-$\frac{1}{2}$)2
(2)解方程:$\frac{1}{5}$(x+15)=$\frac{1}{2}$-$\frac{1}{3}$(x-7)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程组$\left\{\begin{array}{l}{2x+y=16}\\{x+y=10}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.用相同边长的正三角形和正方形进行镶嵌,若每一个顶点周围有m个正三角形和n个正方形.则m,n满足的关系是(  )
A.2m+3n=12B.m+n=7C.2m+n=6D.m+2n=6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.
(1)求y与x之间的函数关系式;
(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?

查看答案和解析>>

同步练习册答案